Identification of Covid-19 From Cough Sounds Using Non-Linear Analysis and Machine Learning

No Thumbnail Available

Date

2021

Authors

Solak, Fatma Zehra

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Automatic diagnosis of COVID-19 has an active role in reducing the spread of the disease by minimizing interaction with people. Machine learning models using various signals and images form the basis of automatic diagnosis. This study presents the machine learning based models for detecting COVID-19 infection using ‘Virufy’ dataset containing cough sound signals labeled as COVID-19 and Non-COVID-19. Since the number of COVID positive coughs in the set is less than those of COVID negative, firstly, data balancing was performed with the ADASYN oversampling technique in the study. Then, features were extracted by non-linear analysis of cough sounds using Multifractal Detrended Fluctuation Analysis (MDFA), Lempel–Ziv Complexity (LZC) and entropy measures. Later, the most effective features were selected by ReliefF method. Finally, five machine learning algorithms, namely Support Vector Machine with Radial Basis Function (SVM-RBF), Random Forest (RF), Adaboost, Artificial Neural Network (ANN), k Nearest Neighbor (kNN) were used to identify cough sounds as COVID-19 or Non-COVID19. As a result of the study, the cough sounds of COVID-19 patients and Non-COVID19 subjects were identified with 95.8% classification accuracy thanks to the RBF kernel function of SVM and the selected effective features. With this classifier, 93.1% sensitivity, 98.6% specificity, 98.6% precision, 0.92 kappa statistical values and 93.2% area under the ROC curve were obtained.
COVID-19'un otomatik teşhisi, insanlarla etkileşimi en aza indirerek hastalığın yayılmasını azaltmada aktif bir role sahiptir. Çeşitli sinyal ve görüntüleri kullanan makine öğrenmesi modelleri, otomatik tanılamanın temelini oluşturur. Bu çalışma, COVID-19 ve COVID-19 değil olarak etiketlenmiş öksürük ses sinyallerini içeren 'Virufy' veri setini kullanarak COVID-19 enfeksiyonunu tespit etmek için makine öğrenmesi tabanlı modeller sunmaktadır. Veri setindeki COVID pozitif öksürük sayısı, COVID negatif olanlardan daha az olduğu için çalışmada öncelikle ADASYN aşırı örnekleme tekniği ile veri dengeleme yapılmıştır. Ardından, Çokfraktallı Eğimden Arındırılmış Dalgalanma Analizi (Multifraktal Detrended Fluctuation Analysis - MDFA), Lempel-Ziv Karmaşıklığı (Lempel–Ziv Complexity-LZC) ve entropi ölçümleri kullanılarak öksürük seslerinin doğrusal olmayan analizi ile öznitelikler çıkarılmıştır. Daha sonra ReliefF yöntemi ile en etkili öznitelikler seçilmiştir. Son olarak, öksürük seslerini COVID-19 veya değil olarak tanımlamak için, Radyal Tabanlı Çekirdek fonksiyona sahip Destek vektör Makineleri (Support Vector Machine with Radial Basis Function-SVM-RBF), Rastgele Orman (Random Forest-RF), Adaboost, Yapay Sinir Ağları (Artificial Neural Network -ANN), k En Yakın Komşuluk (k Nearest Neighbor -kNN) olmak üzere beş makine öğrenme algoritması kullanılmıştır. Çalışma sonucunda, radyal tabanlı çekirdek fonksiyonuna sahip destek vektör makinesi ve seçilen etkin öznitelikler sayesinde COVID-19 hastalarının ve COVID19 olmayan deneklerin öksürük sesleri %95.8 sınıflandırma doğruluğu ile belirlenmiştir. Bu sınıflandırıcı ile %93.1 duyarlılık, %98.6 özgüllük, %98.6 kesinlik, 0.92 kappa istatistik değerleri ve %93.2 ROC eğrisi altında kalan alan değeri elde edilmiştir.

Description

Keywords

Mühendislik Temel Alanı>Bilgisayar Bilimleri ve Mühendisliği>Yapay Zeka>Makine Öğrenmesi, Cough Sounds, Öksürük Sesleri, Entropy, Entropi, Machine Learning, Makine Öğrenimi, MDFA, LZC, SVM

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
1

Source

European Journal of Science and Technology

Volume

28

Issue

28

Start Page

710

End Page

716
PlumX Metrics
Captures

Mendeley Readers : 7

Downloads

2

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.30932502

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.