Failure Prediction of Aircraft Equipment Using Machine Learning With a Hybrid Data Preparation Method

dc.contributor.author Çelikmıh, Kadir
dc.contributor.author İnan, Onur
dc.contributor.author Uğuz, Harun
dc.date.accessioned 2021-12-13T10:24:04Z
dc.date.available 2021-12-13T10:24:04Z
dc.date.issued 2020
dc.description.abstract There is a large amount of information and maintenance data in the aviation industry that could be used to obtain meaningful results in forecasting future actions. This study aims to introduce machine learning models based on feature selection and data elimination to predict failures of aircraft systems. Maintenance and failure data for aircraft equipment across a period of two years were collected, and nine input and one output variables were meticulously identified. A hybrid data preparation model is proposed to improve the success of failure count prediction in two stages. In the first stage, ReliefF, a feature selection method for attribute evaluation, is used to find the most effective and ineffective parameters. In the second stage, aK-means algorithm is modified to eliminate noisy or inconsistent data. Performance of the hybrid data preparation model on the maintenance dataset of the equipment is evaluated by Multilayer Perceptron (MLP) as Artificial Neural network (ANN), Support Vector Regression (SVR), and Linear Regression (LR) as machine learning algorithms. Moreover, performance criteria such as the Correlation Coefficient (CC), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) are used to evaluate the models. The results indicate that the hybrid data preparation model is successful in predicting the failure count of the equipment. en_US
dc.description.sponsorship Scientific Research Project of Havelsan and Presidency of Defence Industries project [HVL-SoZ-18/033] en_US
dc.description.sponsorship This study was supported by the Scientific Research Project of Havelsan and Presidency of Defence Industries project, grant no. HVL-SoZ-18/033. en_US
dc.identifier.doi 10.1155/2020/8616039
dc.identifier.issn 1058-9244
dc.identifier.issn 1875-919X
dc.identifier.scopus 2-s2.0-85092050243
dc.identifier.uri https://doi.org/10.1155/2020/8616039
dc.identifier.uri https://hdl.handle.net/20.500.13091/345
dc.language.iso en en_US
dc.publisher HINDAWI LTD en_US
dc.relation.ispartof SCIENTIFIC PROGRAMMING en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial Neural-Network en_US
dc.subject Support en_US
dc.subject Reliability en_US
dc.subject Internet en_US
dc.subject System en_US
dc.subject Things en_US
dc.title Failure Prediction of Aircraft Equipment Using Machine Learning With a Hybrid Data Preparation Method en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Celikmih, Kadir/0000-0002-0084-6474
gdc.author.scopusid 57219278982
gdc.author.scopusid 55243323100
gdc.author.scopusid 23480734900
gdc.author.wosid Celikmih, Kadir/AAA-1357-2021
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 10
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.volume 2020 en_US
gdc.identifier.openalex W3082745725
gdc.identifier.wos WOS:000570897500003
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 10.0
gdc.oaire.influence 3.9296775E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.6150521E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 4.9987657
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 17
gdc.plumx.mendeley 95
gdc.plumx.patentfamcites 1
gdc.plumx.scopuscites 38
gdc.scopus.citedcount 36
gdc.virtual.author Uğuz, Harun
gdc.wos.citedcount 18
relation.isAuthorOfPublication 93b81b65-bf1c-47ae-b890-6ca43e5dd865
relation.isAuthorOfPublication.latestForDiscovery 93b81b65-bf1c-47ae-b890-6ca43e5dd865

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
8616039.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format