TEK FREKANSLI GNSS ALICILARINDA KULLANILAN İYONOSFERİK ETKİ DÜZELTME MODELLERİNİN KARŞILAŞTIRILMASI
No Thumbnail Available
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Konya Technical University
Open Access Color
GOLD
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Uydularla konum belirleme ve navigasyon (GNSS) uygulamalarında, Seçimli Doğruluk Erişimi (SA: Selective Availability) gibi kasıtlı bozmalar haricinde, en önemli hata kaynaklarından birisi iyonosferdir.İyonosferde atomlardan kopmuş serbest elektronların sayısı elektromanyetik dalgaların yayılmasını değiştirmeye yetecek kadar çoktur. İyonosferik etki, bu serbest elektronlar nedeniyle, uydu kod ölçülerinde gecikmeye, faz ölçülerinde ise hızlanmaya neden olmaktadırlar. Diğer taraftan iyonosferik etki frekans bağımlıdır. GNSS alıcılarının çok frekanslı olmasının en temel nedenlerinden birisi iyonosferik etkinin frekans bağımlı olması ve bu özellikten yararlanarak büyük oranda giderilebilmesidir.Ancak, tek frekanslı alıcılarda iyonosferik etkinin bu yöntemle giderilmesi olanağı bulunmamakta, bunun yerine navigasyon mesajları içerisinde yayınlanan iyonosferik model katsayıları kullanılarak giderilebilmektedir. Bu bağlamda, genelde gerçek zamanlı uygulamalar ve tek frekanslı alıcılar için örneğin GPS navigasyon mesajlarında Klobuchar iyonosfer modeli katsayıları da yayınlanmaktadır. Bu model ile iyonosferik etkinin yaklaşık %50’sinin giderilebilmesi olanaklıdır. Diğer taraftan, Uluslararası Telekomünikasyon Birliği (ITU) tarafından günümüz uydu sistemleri ve tek frekanslı alıcılar için önerilen NeQuick modeli kullanılarak da iyonosferik etkiler %70 oranında giderilebilmektedir. Bu çalışmada, Klobuchar ve NeQuick modellerine ilişkin algoritmalar kullanılarak iyonosferik etki hesapları yapılmış ve sonuçlar karşılaştırılmıştır. Bu çalışma ile söz konusu model algoritmalarının, zaman içerisinde Türkiye’de de üretilmesinin kaçınılmaz olduğuna inanılan yerli ve millî tek frekanslı GNSS alıcı yazılımlarında gerçek zamanlı mutlak konum belirleme amaçlı olarak kolaylıkla uyarlanabileceği sonucuna ulaşılmıştır.
Ionosphere is one of the most important error sources in GNSS positioning and navigation applications, except for deliberate disruptions such as Selective Availability. The number of free electrons detached from atoms in the ionosphere is large enough to change the propagation of electromagnetic waves. The ionospheric effect causes delay in GNSS code measurements (group delay) and acceleration in phase measurements (phase advance) due to these free electrons. One of the main reasons why GNSS receivers are multi-frequency is that the ionospheric effect is frequency dependent and can be largely eliminated by taking advantage of this feature. However, it is not possible to eliminate the ionospheric effect in single frequency receivers with multi-frequency method, instead it can be eliminated by using the ionospheric model coefficients broadcast in the navigation messages. In this context, Klobuchar ionosphere model coefficients are also broadcast for real-time applications and single frequency receivers, for example in GPS navigation messages. With this model, it is possible to eliminate approximately 50% of the ionospheric effect. On the other hand, ionospheric effects can be eliminated by 70% using the NeQuick model recommended by International Telecommunication Union (ITU) for today's satellite systems and single frequency receivers. In this study, Ionospheric effect computations were performed using Klobuchar and NeQuick algorithms and the obtained results were compared. With this research, it has been concluded that both algorithms can be adapted in any “local and national” GNSS receiver firmware to be manufactured in future in Turkey.
Ionosphere is one of the most important error sources in GNSS positioning and navigation applications, except for deliberate disruptions such as Selective Availability. The number of free electrons detached from atoms in the ionosphere is large enough to change the propagation of electromagnetic waves. The ionospheric effect causes delay in GNSS code measurements (group delay) and acceleration in phase measurements (phase advance) due to these free electrons. One of the main reasons why GNSS receivers are multi-frequency is that the ionospheric effect is frequency dependent and can be largely eliminated by taking advantage of this feature. However, it is not possible to eliminate the ionospheric effect in single frequency receivers with multi-frequency method, instead it can be eliminated by using the ionospheric model coefficients broadcast in the navigation messages. In this context, Klobuchar ionosphere model coefficients are also broadcast for real-time applications and single frequency receivers, for example in GPS navigation messages. With this model, it is possible to eliminate approximately 50% of the ionospheric effect. On the other hand, ionospheric effects can be eliminated by 70% using the NeQuick model recommended by International Telecommunication Union (ITU) for today's satellite systems and single frequency receivers. In this study, Ionospheric effect computations were performed using Klobuchar and NeQuick algorithms and the obtained results were compared. With this research, it has been concluded that both algorithms can be adapted in any “local and national” GNSS receiver firmware to be manufactured in future in Turkey.
Description
DergiPark: 849391
konjes
konjes
Keywords
GNSS, İyonosfer, Klobuchar, NeQuick, TEC, GNSS, Ionosphere, Klobuchar, NeQuick, TEC, GNSS;Ionosphere;Klobuchar;NeQuick;TEC, Engineering, GNSS;İyonosfer;Klobuchar;NeQuick;TEC, Mühendislik
Turkish CoHE Thesis Center URL
Fields of Science
0203 mechanical engineering, 02 engineering and technology, 01 natural sciences, 0105 earth and related environmental sciences
Citation
WoS Q
Q4
Scopus Q
N/A

OpenCitations Citation Count
3
Source
Konya Mühendislik Bilimleri Dergisi
Volume
9
Issue
2
Start Page
428
End Page
441
PlumX Metrics
Citations
CrossRef : 1
Captures
Mendeley Readers : 1
Downloads
1
checked on Feb 03, 2026
Google Scholar™

OpenAlex FWCI
0.92170078
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES


