Minimum Şekil Değiştirme Enerjisi Kullanarak En Aw 6082 Alaşımına Optimum Dövme Karakteristiğinin Kazandırılması
No Thumbnail Available
Files
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Konya Teknik Üniversitesi
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Alüminyum yeryüzünde oksijen ve silisyumdan sonra en çok rastlanan elementtir. Doğada oksit halinde olan alüminyumu saflaştırmak ve metalik hale getirmek oldukça zordur. Alüminyum, metalik malzemeler içerisinde demir (Fe) esaslılardan sonra en çok kullanılan malzemedir. Alüminyum alaşımları özellikle düşük yoğunluğundan dolayı uzay, havacılık ve otomotiv endüstrisinde sıkça tercih edilmektedir. Yüksek özgül mukavemetinden dolayı alüminyum alaşımları ile enerji tasarrufu sağlanmaktadır. Bu çalışmada otomotiv süspansiyon bileşeni olarak kullanılan alüminyum parçaların üretimi ve mekanik özellikleri incelenmiştir. Sıcak dövme yöntemi ile üretilen alüminyum parçaların daha az enerji harcanarak aynı mekanik özellikleri sağlaması hedeflenmiştir. Bu tez çalışmasının temel hedefi proses maliyetlerinin, dövme mekanik özellikleri korunarak azaltılmasıdır. Ön ısıtma teknolojisi, ön ısıtma sıcaklığı, deformasyon oranı, yüzey pürüzlülüğü ve çapak oranı gibi parametreler karşılaştırmalı olarak incelenmiştir. Üretim parametrelerinin tane boyutu üzerindeki etkisi belirlenmiştir. Dövme ön ısıtma teknolojisinde rezistanslı sistem, infrared ısıtma (kızıl ötesi) ve indüksiyon ısıtma sistemleri araştırılmıştır. 4 farklı sıcaklık (450°C, 475°C, 500°C, 525°C) değerinde her ön ısıtma teknolojisinde dövülen parçaların mekanik özellikleri karşılaştırılmıştır. Ayrıca farklı sıcaklık ve ön ısıtma teknolojisinde dövülen parçaların farklı deformasyon oranları ile de dövme yapılmıştır. Kalıp yüzey pürüzlülüğünün etkisinin belirlenmesi için farklı yüzey kalitesinde kalıplarla dövme yapılarak yayılmaları incelenmiştir. En az enerji kullanarak en iyi malzeme özelliklerini sağlayan ön ısıtma teknolojisi indüksiyon ısıtma sistemidir. Ön ısıtma sıcaklığı yükseldikçe malzemeye yüklenen termomekanik enerji artığı için malzeme özelikleri iyileşmiştir. Yüksek ön ısıtma sıcaklığında tane boyutu büyümemektedir. Deformasyon oranı %50'nin altında kaldığında tane irileşmesi görülmezken %70 deformasyon oranında tane boyutlarında büyüme olmuştur. Kalıp yüzey pürüzlülüğü arttıkça aynı parametrelerde malzemenin şekil değiştirme miktarı azalmıştır.
Aluminum is the most common element on earth after oxygen and silicon. It is quite difficult to purify and make metallic aluminum from its oxide in natüre. Aluminum is the most widely used material after iron (Fe) among metallic materials. Aluminum alloys are mostly preferred in the aerospace, aviation and automotive industries, especially because of their low density. Due to its high specific strength, aluminum alloys cold provide energy savings.. In this study, production and mechanical properties of aluminum parts used as automotive suspension components were investigated. İt was aimed to goin the same mechanical properties by consuming less energy for aluminum parts producet by hot forging method. The main objective of the this thesis study is to reduce process costs while maintaining the forging mechanical properties. Parameters such as preheating technology, preheat temperature, deformation rate, surface roughness and burr rate were examined comparatively. The effect of production parameters on grain size was determined. Resistance system, infrared heating and induction heating systems were investigated in forging preheating technology. The mechanical properties of the forgings were compared in each preheating technology at 4 different temperatures (450 ° C, 475 ° C, 500 ° C, 525 ° C). In addition, different temperature and preheating technology forged parts with different deformation rates were also forged. In order to see the effect of mold surface roughness, spreading was done by forging with different surface quality molds. The induction heating system is the preheating technology that provides the best material properties using the least energy. As the preheating temperature rises, the material properties are improved for the thermomechanical energy surplus charged to the material. The grain size does not grow at high preheating temperature. When the deformation rate is below 50%, there is no grain coarsening and there is growth in grain size at 70% deformation rate. As the surface roughness of the mold increases, the amount of deformation of the material decreases with the same parameters.
Aluminum is the most common element on earth after oxygen and silicon. It is quite difficult to purify and make metallic aluminum from its oxide in natüre. Aluminum is the most widely used material after iron (Fe) among metallic materials. Aluminum alloys are mostly preferred in the aerospace, aviation and automotive industries, especially because of their low density. Due to its high specific strength, aluminum alloys cold provide energy savings.. In this study, production and mechanical properties of aluminum parts used as automotive suspension components were investigated. İt was aimed to goin the same mechanical properties by consuming less energy for aluminum parts producet by hot forging method. The main objective of the this thesis study is to reduce process costs while maintaining the forging mechanical properties. Parameters such as preheating technology, preheat temperature, deformation rate, surface roughness and burr rate were examined comparatively. The effect of production parameters on grain size was determined. Resistance system, infrared heating and induction heating systems were investigated in forging preheating technology. The mechanical properties of the forgings were compared in each preheating technology at 4 different temperatures (450 ° C, 475 ° C, 500 ° C, 525 ° C). In addition, different temperature and preheating technology forged parts with different deformation rates were also forged. In order to see the effect of mold surface roughness, spreading was done by forging with different surface quality molds. The induction heating system is the preheating technology that provides the best material properties using the least energy. As the preheating temperature rises, the material properties are improved for the thermomechanical energy surplus charged to the material. The grain size does not grow at high preheating temperature. When the deformation rate is below 50%, there is no grain coarsening and there is growth in grain size at 70% deformation rate. As the surface roughness of the mold increases, the amount of deformation of the material decreases with the same parameters.
Description
Keywords
Metalurji Mühendisliği, Metallurgical Engineering, Enerji tüketimi, Energy consumption, Kızılötesi, Infrared
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
N/A
Scopus Q
N/A
Source
Volume
Issue
Start Page
1
End Page
96
Collections
Google Scholar™
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

6
CLEAN WATER AND SANITATION

7
AFFORDABLE AND CLEAN ENERGY

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

14
LIFE BELOW WATER

