Predicting the Relationship Between Consumer Buying Behavior (CBB) and Consumption Metaphor (CM) Through Machine Learning (ML)

dc.contributor.author Koyluoglu, Alaaddin Selcuk
dc.contributor.author Esme, Engin
dc.date.accessioned 2025-07-10T19:13:53Z
dc.date.available 2025-07-10T19:13:53Z
dc.date.issued 2025
dc.description.abstract The use of machine learning (ML) in the field of marketing has recently gained momentum in parallel with the development of technology. ML not only enables customers to predict their digital actions but also supports targeting the right customers with the best content at the right time. The study aims to predict the relationship between consumer buying behavior (CBB) and consumption metaphor (CM) through ML. In this context, the application of the study was built on two scenarios. In the first scenario, CBB is associated with the CM to confirm the ML estimation. In the second scenario, it is aimed that ML both predicts CBB and estimates and confirms the effect of CM on CBB. As a result, the k-nearest neighbors algorithm was able to predict consumers at the rate of 91.02% accuracy and predict consumers who do not intend to have tattoos at the rate of 90.98%. When the CM is considered, ML predicted consumers at the rate of 78.33% accuracy, and predicted consumers who do not tend to buy at the rate of 79%. en_US
dc.description.sponsorship Artificial Intelligence Application and Research Centre of Konya Technical University en_US
dc.description.sponsorship This study was supported by the Artificial Intelligence Application and Research Centre of Konya Technical University. en_US
dc.identifier.doi 10.2478/mmcks-2025-0001
dc.identifier.issn 1842-0206
dc.identifier.issn 2069-8887
dc.identifier.scopus 2-s2.0-105009359950
dc.identifier.uri https://doi.org/10.2478/mmcks-2025-0001
dc.identifier.uri https://hdl.handle.net/20.500.13091/10140
dc.language.iso en en_US
dc.publisher Sciendo en_US
dc.relation.ispartof Management & Marketing
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Consumer Buying Behavior en_US
dc.subject Consumption Metaphor en_US
dc.subject Artificial Intelligence en_US
dc.subject Machine Learning en_US
dc.title Predicting the Relationship Between Consumer Buying Behavior (CBB) and Consumption Metaphor (CM) Through Machine Learning (ML) en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57202859675
gdc.author.scopusid 57189468408
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Koyluoglu, Alaaddin Selcuk] Selcuk Univ, Dept Mkt, Konya, Turkiye; [Esme, Engin] Konya Tech Univ, Artificial Intelligence Applicat & Res Ctr, Konya, Turkiye en_US
gdc.description.endpage 51 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 35 en_US
gdc.description.volume 20 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q4
gdc.identifier.openalex W4411018237
gdc.identifier.wos WOS:001501838100004
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords machine learning
gdc.oaire.keywords HF5001-6182
gdc.oaire.keywords consumer buying behavior
gdc.oaire.keywords Business
gdc.oaire.keywords artificial intelligence
gdc.oaire.keywords consumption metaphor
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.25
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 12
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Eşme, Engin
gdc.wos.citedcount 0
relation.isAuthorOfPublication c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6
relation.isAuthorOfPublication.latestForDiscovery c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6

Files