Assessment of University Students' Earthquake Coping Strategies Using Artificial Intelligence Methods

dc.contributor.author Sulak, Suleyman Alpaslan
dc.contributor.author Koklu, Nigmet
dc.date.accessioned 2025-10-10T15:17:54Z
dc.date.available 2025-10-10T15:17:54Z
dc.date.issued 2025
dc.description Sulak, Suleyman Alpaslan/0000-0001-9716-9336; en_US
dc.description.abstract Earthquakes are one of the most destructive natural disasters that pose a serious threat to human life and infrastructure worldwide. The aim of this study is to evaluate the coping strategies of adult individuals in Turkey regarding earthquake stress using artificial intelligence-based methods. The data was collected from 858 university students living in Turkey during January, February, and March 2024. A dataset was created using the 'Coping Scale for Earthquake Stress.' Prediction models were established using artificial intelligence algorithms such as Logistic Regression (LR), Bagging, and Random Forest (RF) based on information from 24 variables. The cross-validation method was applied during model training. The Logistic Regression algorithm achieved the highest accuracy rate of 98.60%, while the Bagging algorithm demonstrated the lowest performance with an accuracy rate of 79.95%. The Random Forest algorithm showed moderate performance with an accuracy rate of 85.89%. The findings provide important insights into the coping strategies of the community regarding earthquake stress. This study is expected to contribute significantly to areas such as disaster management, psychology, public health, and community resilience. en_US
dc.identifier.doi 10.1038/s41598-025-17555-4
dc.identifier.issn 2045-2322
dc.identifier.scopus 2-s2.0-105014881442
dc.identifier.uri https://doi.org/10.1038/s41598-025-17555-4
dc.identifier.uri https://hdl.handle.net/20.500.13091/10863
dc.language.iso en en_US
dc.publisher Nature Portfolio en_US
dc.relation.ispartof Scientific Reports en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Coping with Earthquake Stress Scale (CESS) en_US
dc.subject Machine Learning Algorithms en_US
dc.subject Logistic Regression, Bagging en_US
dc.subject Random Forest en_US
dc.title Assessment of University Students' Earthquake Coping Strategies Using Artificial Intelligence Methods en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sulak, Suleyman Alpaslan/0000-0001-9716-9336
gdc.author.scopusid 59193058000
gdc.author.scopusid 57221725261
gdc.author.wosid Sulak, Suleyman/Hko-3533-2023
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Sulak, Suleyman Alpaslan] Necmettin Erbakan Univ, Ahmet Kelesoglu Educ Fac, Konya, Turkiye; [Koklu, Nigmet] Konya Tech Univ, Vocat Sch Tech Sci, Konya, Turkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 15 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4413828726
gdc.identifier.pmid 40883513
gdc.identifier.wos WOS:001565369100003
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.5722415E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Article
gdc.oaire.popularity 4.984267E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 9.20270099
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 11
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.virtual.author Köklü, Niğmet
gdc.wos.citedcount 2
relation.isAuthorOfPublication cdd8c1d2-8413-4c49-8b45-224f36dff980
relation.isAuthorOfPublication.latestForDiscovery cdd8c1d2-8413-4c49-8b45-224f36dff980

Files