Empirical Evaluation of Leveraging Named Entities for Arabic Sentiment Analysis

dc.contributor.author Mulki, Hala
dc.contributor.author Haddad, Hatem
dc.contributor.author Gridach, Mourad
dc.contributor.author Babaoglu, İsmail
dc.date.accessioned 2021-12-13T10:34:35Z
dc.date.available 2021-12-13T10:34:35Z
dc.date.issued 2020
dc.description.abstract Social media reflects the attitudes of the public towards specific events. Events are often related to persons, locations or organizations, the so-called Named Entities (NEs). This can define NEs as sentiment-bearing components. In this paper, we dive beyond NEs recognition to the exploitation of sentiment-annotated NEs in Arabic sentiment analysis. Therefore, we develop an algorithm to detect the sentiment of NEs based on the majority of attitudes towards them. This enabled tagging NEs with proper tags and, thus, including them in a sentiment analysis framework of two models: supervised and lexicon-based. Both models were applied on datasets of multi-dialectal content. The results revealed that NEs have no considerable impact on the supervised model, while employing NEs in the lexicon-based model improved the classification performance and outperformed most of the baseline systems. en_US
dc.identifier.doi 10.34028/iajit/17/2/11
dc.identifier.issn 1683-3198
dc.identifier.issn 2309-4524
dc.identifier.scopus 2-s2.0-85081740232
dc.identifier.uri https://doi.org/10.34028/iajit/17/2/11
dc.identifier.uri https://hdl.handle.net/20.500.13091/1012
dc.language.iso en en_US
dc.publisher ZARKA PRIVATE UNIV en_US
dc.relation.ispartof INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Named entity recognition en_US
dc.subject Arabic sentiment analysis en_US
dc.subject supervised learning method en_US
dc.subject lexicon-based method en_US
dc.title Empirical Evaluation of Leveraging Named Entities for Arabic Sentiment Analysis en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id haddad, hatem/0000-0003-3599-7229
gdc.author.scopusid 57200388232
gdc.author.scopusid 22734490100
gdc.author.scopusid 50161532700
gdc.author.scopusid 23097339300
gdc.author.wosid haddad, hatem/ABD-1530-2021
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 240 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 233 en_US
gdc.description.volume 17 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W2941304839
gdc.identifier.wos WOS:000528659200011
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.7123197E-9
gdc.oaire.isgreen true
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Computer Science - Computation and Language
gdc.oaire.keywords Computation and Language (cs.CL)
gdc.oaire.popularity 4.396243E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.03
gdc.opencitations.count 3
gdc.plumx.mendeley 27
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Babaoğlu, İsmail
gdc.wos.citedcount 1
relation.isAuthorOfPublication 871b6e10-080d-4f91-8bf5-c78453b0d57d
relation.isAuthorOfPublication.latestForDiscovery 871b6e10-080d-4f91-8bf5-c78453b0d57d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
17706.pdf
Size:
500.44 KB
Format:
Adobe Portable Document Format