Residual Compressive Strength of Polyamide Fiber-Reinforced Epoxy Composites After Low-Velocity Impact
Loading...
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In this study, polyamide fibers, which stand out with their excellent plastic deformation and energy absorption capacity, were used as reinforcement materials, and in-house manufactured composite specimens were subjected to low-velocity impact (LVI), compression after impact (CAI) and tensile tests. Within this scope, one and two repeated drop tests were performed under 3 m/s velocity to determine LVI responses and how impact number affects the dynamic properties. CAI tests were also performed at a 1 mm/min crosshead speed, and mechanical properties for non-impacted, one-impacted, and two-impacted specimens were determined. As a result of the outstanding plastic deformation capacity of thermoplastic fabrics, it is concluded that polyamide composites exhibited quite large strains. Furthermore, it was understood from the tensile responses that tensile stresses were carried by the thermoplastic fibers in two different regimes and significantly high toughness was obtained. Moreover, reductions in the maximum compression loads, critical buckling loads and axial stiffness were observed due to degradation in structural integrity after impact loads. Additionally, the utilization of recyclable thermoplastic polyamide fibers as reinforcement material instead of conventional reinforcement materials such as carbon and glass fibers provide more environmentally friendly products.
Description
Keywords
Compression after impact, energy absorption capacity, low-velocity impact, polyamide composites, tensile strength, After-Impact, Thermoplastic Composites, Stacking-Sequence, Damage Formation, Behavior, Pipes
Turkish CoHE Thesis Center URL
Fields of Science
02 engineering and technology, 0210 nano-technology
Citation
WoS Q
Q2
Scopus Q
Q1

OpenCitations Citation Count
13
Source
Polymer Composites
Volume
44
Issue
5
Start Page
2671
End Page
2684
PlumX Metrics
Citations
CrossRef : 16
Scopus : 16
Captures
Mendeley Readers : 11
SCOPUS™ Citations
16
checked on Feb 04, 2026
Web of Science™ Citations
14
checked on Feb 04, 2026
Google Scholar™


