Optimization of Concrete with Human Hair Using Experimental Study and Artificial Neural Network via Response Surface Methodology and Anova

dc.contributor.author Yildizel, Sadik Alper
dc.contributor.author Karalar, Memduh
dc.contributor.author Aksoylu, Ceyhun
dc.contributor.author Althaqafi, Essam
dc.contributor.author Beskopylny, Alexey N.
dc.contributor.author Stel'makh, Sergey A.
dc.contributor.author Ozkilic, Yasin Onuralp
dc.date.accessioned 2025-08-10T17:22:46Z
dc.date.available 2025-08-10T17:22:46Z
dc.date.issued 2025
dc.description.abstract The increasing demand for sustainable construction materials has prompted the investigation of non-biodegradable waste, such as human hair (HH), for concrete reinforcement. This study seeks to evaluate the impact of HH fiber on the fresh, physical, and mechanical characteristics of concrete. HH was incorporated in varying proportions (1-5% by weight of cement), along with modifications in cement content, to ascertain optimal performance conditions. An extensive experimental program was executed, succeeded by the utilization of Artificial Neural Networks (ANN) to formulate predictive models for compressive strength (CS), flexural strength (FS), and splitting tensile strength (STS). Furthermore, Response Surface Methodology (RSM) and Analysis of Variance (ANOVA) were utilized to identify statistically significant factors and optimize the mix design. The findings indicated that the mechanical performance of concrete enhanced with HH inclusion up to 3%, after which a deterioration ensued, presumably due to inadequate dispersion and workability challenges. The ANN models precisely predicted mechanical outcomes, while the RSM-derived models demonstrated strong correlations, with R2 values of 0.9434, 0.9365, and 0.9311 for CS, FS, and STS, respectively. ANOVA confirmed the significance of model inputs with p-values below 0.05. Furthermore, SEM, EDX, and XRD analyses validated the integration of HH into the concrete matrix and substantiated the observed mechanical properties. This study confirms the feasibility of HH as a sustainable fiber in concrete, enhancing critical performance metrics when applied at optimal dosages. The amalgamation of ANN, RSM, and ANOVA offers a thorough methodology for optimizing innovative concrete composites and clarifying the mechanisms underlying performance enhancement. en_US
dc.description.sponsorship Deanship of Scientific Research, King Khalid University [RGP2/539/46]; Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, through Large Groups en_US
dc.description.sponsorship The authors are thankful for the financial support provided for this research by the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, through Large Groups RGP2/539/46. Human hair was collected from the authors. en_US
dc.identifier.doi 10.1038/s41598-025-12782-1
dc.identifier.issn 2045-2322
dc.identifier.issn 2045-2322
dc.identifier.scopus 2-s2.0-105011741360
dc.identifier.uri https://doi.org/10.1038/s41598-025-12782-1
dc.language.iso en en_US
dc.publisher Nature Portfolio en_US
dc.relation.ispartof Scientific Reports en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Human Hair en_US
dc.subject Concrete en_US
dc.subject Anova en_US
dc.subject Response Surface Methodology en_US
dc.title Optimization of Concrete with Human Hair Using Experimental Study and Artificial Neural Network via Response Surface Methodology and Anova en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57120104100
gdc.author.scopusid 35176015100
gdc.author.scopusid 57193686945
gdc.author.scopusid 57857964100
gdc.author.scopusid 59995649900
gdc.author.scopusid 59978391100
gdc.author.scopusid 59360051700
gdc.author.wosid Özkılıç, Yasin Onuralp/Aaa-9279-2019
gdc.author.wosid Shcherban', Evgenii/Aag-6070-2020
gdc.author.wosid Beskopylnyy, Alexey/P-1373-2015
gdc.author.wosid Stel'Makh, Sergei/Aag-6076-2020
gdc.author.wosid Yildizel, Sadik Alper/R-6002-2019
gdc.author.wosid Aksoylu, Ceyhun/Aaq-1447-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Yildizel, Sadik Alper] Karamanoglu Mehmetbey Univ, Engn Fac, Dept Civil Engn, TR-70200 Karaman, Turkiye; [Karalar, Memduh] Zonguldak Bulent Ecevit Univ, Fac Engn, Dept Civil Engn, Zonguldak, Turkiye; [Aksoylu, Ceyhun] Konya Tech Univ, Dept Civil Engn, TR-42250 Konya, Turkiye; [Althaqafi, Essam] King Khalid Univ, Coll Engn, Civil Engn Dept, Abha 61421, Saudi Arabia; [Beskopylny, Alexey N.] Don State Tech Univ, Fac Rd & Transport Syst, Dept Transport Syst, Rostov On Donu 344003, Russia; [Stel'makh, Sergey A.] Don State Tech Univ, Dept Un Bldg & Construct Engn, Gagarin Sq 1, Rostov On Donu 344003, Russia; [Shcherban', Evgenii M.] Don State Tech Univ, Dept Engn Geometry & Comp Graph, Rostov On Donu 344003, Russia; [Umiye, Osman Ahmed] Zamzam Univ Sci & Technol, Fac Engn Technol, Dept Civil Engn, Mogadishu, Somalia; [Umiye, Osman Ahmed; Ozkilic, Yasin Onuralp] Necmettin Erbakan Univ, Dept Civil Engn, TR-42090 Konya, Turkiye; [Ozkilic, Yasin Onuralp] Western Caspian Univ, Dept Tech Sci, Baku 1001, Azerbaijan en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 15 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4412665531
gdc.identifier.wos WOS:001537650500033
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.514003E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Article
gdc.oaire.popularity 3.4930185E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.35
gdc.opencitations.count 0
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 0
gdc.virtual.author Aksoylu, Ceyhun
gdc.wos.citedcount 0
relation.isAuthorOfPublication 4b513eb3-773f-45ba-a4bd-ac58f11c9614
relation.isAuthorOfPublication.latestForDiscovery 4b513eb3-773f-45ba-a4bd-ac58f11c9614

Files