A Hierarchical Approach Based on Aco and Pso by Neighborhood Operators for Tsps Solution

dc.contributor.author Eldem, Hüseyin
dc.contributor.author Ülker, Erkan
dc.date.accessioned 2021-12-13T10:26:52Z
dc.date.available 2021-12-13T10:26:52Z
dc.date.issued 2020
dc.description.abstract It is known that some of the algorithms in optimization field have originated from inspiration from animal behaviors in nature. Natural phenomena such as searching behavior of ants for food in a collective way, movements of birds and fish groups as swarms provided the inspiration for solutions of optimization problems. Traveling Salesman Problem (TSP), a classical problem of combinatorial optimization, has implementations in planning, scheduling and various scientific and engineering fields. Ant colony optimization (ACO) and Particle swarm optimization (PSO) techniques have been commonly used for TSP solutions. The aim of this paper is to propose a new hierarchical ACO- and PSO-based method for TSP solutions. Enhancing neighboring operators were used to achieve better results by hierarchical method. The performance of the proposed system was tested in experiments for selected TSPLIB benchmarks. It was shown that usage of ACO and PSO methods in hierarchical structure with neighboring operators resulted in better results than standard algorithms of ACO and PSO and hierarchical methods in literature. en_US
dc.identifier.doi 10.1142/S0218001420590399
dc.identifier.issn 0218-0014
dc.identifier.issn 1793-6381
dc.identifier.scopus 2-s2.0-85083697424
dc.identifier.uri https://doi.org/10.1142/S0218001420590399
dc.identifier.uri https://hdl.handle.net/20.500.13091/531
dc.language.iso en en_US
dc.publisher WORLD SCIENTIFIC PUBL CO PTE LTD en_US
dc.relation.ispartof INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Ant Colony Optimization en_US
dc.subject Swarm Intelligence en_US
dc.subject Neighborhood Operators en_US
dc.subject Traveling Salesman Problem en_US
dc.subject Metaheuristic en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Hierarchical Approach en_US
dc.subject Traveling Salesman Problem en_US
dc.subject Optimization Algorithm en_US
dc.subject Search Algorithm en_US
dc.subject Particle Swarm en_US
dc.title A Hierarchical Approach Based on Aco and Pso by Neighborhood Operators for Tsps Solution en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Eldem, Huseyin/0000-0002-7333-8104
gdc.author.scopusid 55326495100
gdc.author.scopusid 23393979800
gdc.author.wosid Eldem, Huseyin/AAK-5695-2021
gdc.author.wosid Ulker, Erkan/C-9040-2017
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.issue 11 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 2059039
gdc.description.volume 34 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W2994349054
gdc.identifier.wos WOS:000585936500016
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.8101068E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.9489976E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.61447098
gdc.openalex.normalizedpercentile 0.77
gdc.opencitations.count 4
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Ülker, Erkan
gdc.wos.citedcount 3
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files