Real-Time Safety Helmets and Vests Detection in Industrial Environments Using YOLO

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Worker safety is a critical concern in industrial and construction environments, where hazardous conditions can pose significant risks to employees. Ensuring that workers wear appropriate safety equipment, such as safety helmets and vests, is essential in preventing serious workplace injuries and illnesses. However, traditional monitoring methods may be insufficient for effectively detecting whether workers are adhering to safety regulations. Manual inspections, while common, can be time-consuming, and difficult to implement consistently across large worksites. This paper explores the application of the You Only Look Once object detection algorithm to automatically detect safety helmets and vests in real-time. By combining deep learning and computer vision methods, the implemented solution aims to enhance workplace safety compliance by providing an efficient, scalable, and accurate method for monitoring workers. The real-time nature of YOLO enables swift identification of safety violations, allowing for prompt corrective actions. This approach has the potential to significantly improve worker protection while reducing the reliance on manual inspection processes, ultimately contributing to a safer and more efficient working environment. © 2025 Elsevier B.V., All rights reserved.

Description

Keywords

Computer Vision, Deep Learning, Safety Helmet, Safety Vest, Worker Safety, YOLO, Accident Prevention, Learning Systems, Object Detection, Object Recognition, Occupational Risks, Safety Devices, Construction Environment, Deep Learning, Industrial Environments, Manual Inspection, Real-Time, Safety Helmet, Safety Vest, Worker Safety, Workers', YOLO, Computer Vision

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

-- 9th International Symposium on Innovative Approaches in Smart Technologies, ISAS 2025 -- Gaziantep -- 211342

Volume

Issue

Start Page

1

End Page

4
PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 5

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.