Real-Time Segmentation and Detection of Ponticulus Posticus in Lateral Cephalometric Radiographs Using Yolov8: a Step Towards Enhanced Clinical Evaluation

dc.contributor.author Akyuz, Mehmet
dc.contributor.author Besnili, Seyda
dc.contributor.author Magat, Guldane
dc.contributor.author Ceylan, Murat
dc.date.accessioned 2025-07-10T19:13:54Z
dc.date.available 2025-07-10T19:13:54Z
dc.date.issued 2025
dc.description.abstract ObjectivesPonticulus posticus (PP) is a bony structure in the cervical spine, often difficult to identify in radiographic images, and its detection is important for both orthodontic diagnosis and clinical decision-making related to craniovertebral pathologies. The purpose of this study is to develop a deep learning-based approach for detecting the PP in lateral cephalometric radiographs using the YOLOv8-seg model.MethodsThis retrospective study analyzed a dataset of 1000 anonymized lateral cephalometric radiographs, focusing on the segmentation and detection of the PP. Images were resized to 640 x 640 pixels and labeled by two experienced dentomaxillofacial radiologists. The YOLOv8-seg model, designed for segmentation tasks, was trained over 100 epochs with a batch size of sixteen, using pre-trained weights from the COCO dataset. Model performance was evaluated using precision, recall, mean average precision (mAP), and F1 score metrics.ResultsThe YOLOv8s-seg model demonstrated high accuracy in detecting the PP, with a precision of 62.81%, recall of 88.7%, mAP50 of 75.27%, mAP95 of 62.28%, and an F1 score of 73.54%. Even in cases where the boundaries of the C1 cervical vertebra were not clearly distinguishable, the model performed effectively, suggesting its reliability in clinical applications.ConclusionsThe proposed YOLOv8-seg model shows promising potential for improving the accuracy and efficiency of PP detection in lateral cephalometric radiographs. By integrating AI into the diagnostic process, orthodontic practices can benefit from more precise and reliable identification of small but clinically significant anatomical structures, ultimately enhancing patient care and diagnostic accuracy. en_US
dc.identifier.doi 10.1186/s12903-025-06196-8
dc.identifier.issn 1472-6831
dc.identifier.scopus 2-s2.0-105007071316
dc.identifier.uri https://doi.org/10.1186/s12903-025-06196-8
dc.identifier.uri https://hdl.handle.net/20.500.13091/10146
dc.language.iso en en_US
dc.publisher BMC en_US
dc.relation.ispartof BMC Oral Health
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Learning en_US
dc.subject Lateral Cephalometric Radiographs en_US
dc.subject Ponticulus Posticus en_US
dc.subject Yolov8-Seg Model en_US
dc.subject Orthodontic Diagnosis en_US
dc.title Real-Time Segmentation and Detection of Ponticulus Posticus in Lateral Cephalometric Radiographs Using Yolov8: a Step Towards Enhanced Clinical Evaluation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57838053800
gdc.author.scopusid 59414025100
gdc.author.scopusid 57090729900
gdc.author.scopusid 56276648900
gdc.author.wosid Magat, Guldane/Aai-7506-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Akyuz, Mehmet] Denizli Oral & Dent Hlth Ctr, Oral & Maxillofacial Radiologist, Denizli, Turkiye; [Magat, Guldane] Necmettin Erbakan Univ, Fac Dent, Dept Oral & Maxillofacial Radiol, Konya, Turkiye; [Ceylan, Murat] Konya Tech Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, Konya, Turkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 25 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4410826026
gdc.identifier.pmid 40437474
gdc.identifier.wos WOS:001498578600015
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5725817E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Orthodontic diagnosis
gdc.oaire.keywords YOLOv8-seg model
gdc.oaire.keywords Dentistry
gdc.oaire.keywords Research
gdc.oaire.keywords Deep learning
gdc.oaire.keywords RK1-715
gdc.oaire.keywords Lateral cephalometric radiographs
gdc.oaire.keywords Ponticulus posticus
gdc.oaire.popularity 3.518896E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 6.56890213
gdc.openalex.normalizedpercentile 0.89
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 2
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files