Training Multi-Layer Perceptron With Artificial Algae Algorithm

dc.contributor.author Türkoğlu, Bahaeddin
dc.contributor.author Kaya, Ersin
dc.date.accessioned 2021-12-13T10:41:22Z
dc.date.available 2021-12-13T10:41:22Z
dc.date.issued 2020
dc.description.abstract Artificial Neural Networks are commonly used to solve problems in many areas, such as classification, pattern recognition, and image processing. The most challenging and critical phase of an Artificial Neural Networks is related with its training process. The main challenge in the training process is finding optimal network parameters (i.e. weight and biase). For this purpose, numerous heuristic algorithms have been used. One of them is Artificial Algae Algorithm, which has a nature-inspired metaheuristic optimization algorithm. This algorithm is capable of successfully solving a wide variety of numerical optimization problems. In this study, Artificial Algae Algorithm is proposed for training Artificial Neural Network. Ten classification datasets with different degrees of difficulty from the UCI database repository were used to compare the proposed method performance with six well known swarm-based optimization and backpropagation algorithms. The results of the study show that Artificial Algae Algorithm is a reliable approach for training Artificial Neural Networks. (C) 2020 Karabuk University. Publishing services by Elsevier B.V. en_US
dc.identifier.doi 10.1016/j.jestch.2020.07.001
dc.identifier.issn 2215-0986
dc.identifier.scopus 2-s2.0-85088100087
dc.identifier.uri https://doi.org/10.1016/j.jestch.2020.07.001
dc.identifier.uri https://hdl.handle.net/20.500.13091/1437
dc.language.iso en en_US
dc.publisher ELSEVIER - DIVISION REED ELSEVIER INDIA PVT LTD en_US
dc.relation.ispartof ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial Algae Algorithm en_US
dc.subject Training Multi-Layer Perceptron en_US
dc.subject Optimization en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Feedforward Neural-Networks en_US
dc.subject Differential Evolution en_US
dc.subject Prediction en_US
dc.title Training Multi-Layer Perceptron With Artificial Algae Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57218160917
gdc.author.scopusid 36348487700
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 1350 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1342 en_US
gdc.description.volume 23 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3042767106
gdc.identifier.wos WOS:000594633000005
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 24.0
gdc.oaire.influence 4.1584376E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9575554E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 6.60867968
gdc.openalex.normalizedpercentile 0.97
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 31
gdc.plumx.crossrefcites 34
gdc.plumx.mendeley 49
gdc.plumx.scopuscites 61
gdc.scopus.citedcount 61
gdc.virtual.author Kaya, Ersin
gdc.wos.citedcount 52
relation.isAuthorOfPublication 6b459b99-eed9-45fb-b42f-50fbb4ee7090
relation.isAuthorOfPublication.latestForDiscovery 6b459b99-eed9-45fb-b42f-50fbb4ee7090

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2215098620300616-main.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format