Machine Learning-Based Approach for Efficient Prediction of Toxicity of Chemical Gases Using Feature Selection

dc.contributor.author Erturan, Ahmet Murat
dc.contributor.author Karaduman, Gül
dc.contributor.author Durmaz, Habibe
dc.date.accessioned 2023-08-03T19:00:12Z
dc.date.available 2023-08-03T19:00:12Z
dc.date.issued 2023
dc.description.abstract Toxic gases can be fatal as they damage many living tissues, especially the nervous and respiratory systems. They can cause permanent damage for many years by harming environmental tissue and living organisms. They can also cause mass deaths when used as chemical weapons. These chemical agents consist of organophosphates, namely ester, amide, or thiol derivatives of phosphorus, phosphonic or phosphinic acids, or can be synthesized independently. In this study, machine learning models were used to predict the toxicity of chemical gases. Toxic and non-toxic gases, consisting of 144 gases, were identified according to the United States Environmental Protection Agency, Occupational Safety and Health Administration, and the Centers for Disease Control and Prevention. Six machine-learning models were used to predict the toxicity of these chemical gases. The per-formance of the models was verified through internal and external validation. The results showed that the model's internal validation accuracy was 86.96% with the Relief-J48 algorithm. The accuracy value of the model was 89.65% with the Bayes Net algorithm for external validation. Our results reveal that identifying the toxicity of existing and potential chemicals is essential for the early detection of these chemicals in nature. en_US
dc.identifier.doi 10.1016/j.jhazmat.2023.131616
dc.identifier.issn 0304-3894
dc.identifier.issn 1873-3336
dc.identifier.scopus 2-s2.0-85159386574
dc.identifier.uri https://doi.org/10.1016/j.jhazmat.2023.131616
dc.identifier.uri https://hdl.handle.net/20.500.13091/4334
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Journal of Hazardous Materials en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Toxic gases en_US
dc.subject Machine Learning en_US
dc.subject Chemical Agents en_US
dc.subject Organophosphates (OPs) en_US
dc.subject QSAR en_US
dc.subject Autocorrelation Descriptor en_US
dc.title Machine Learning-Based Approach for Efficient Prediction of Toxicity of Chemical Gases Using Feature Selection en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id ERTURAN, Ahmet Murat/0000-0001-7328-644X
gdc.author.institutional
gdc.author.scopusid 57221818028
gdc.author.scopusid 57565547200
gdc.author.scopusid 55279344700
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Erturan, Ahmet Murat] Konya Tech Univ, Dept Elect & Elect Engn, Konya, Turkey; [Karaduman, Gul] Karamanoglu Mehmetbey Univ, Vocat Sch Hlth Serv, TR-70200 Karaman, Turkey; [Durmaz, Habibe] Karamanoglu Mehmetbey Univ, Dept Elect & Elect Engn, Karaman, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 131616
gdc.description.volume 455 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4376105073
gdc.identifier.pmid 37201279
gdc.identifier.wos WOS:001008756000001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 16.0
gdc.oaire.influence 2.9970324E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Machine Learning
gdc.oaire.keywords Bayes Theorem
gdc.oaire.keywords Gases
gdc.oaire.keywords Amides
gdc.oaire.keywords United States
gdc.oaire.keywords Algorithms
gdc.oaire.popularity 1.2698935E-8
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 2.2242927
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 8
gdc.plumx.crossrefcites 14
gdc.plumx.mendeley 24
gdc.plumx.newscount 1
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 16
gdc.scopus.citedcount 15
gdc.wos.citedcount 13

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0304389423008993-main.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format