ResNet-ViT-SVM a New Hybrid Architecture Proposal and Experimental Comparisons on Date Fruit

dc.contributor.author Sabanci, K.
dc.contributor.author Aslan, M.F.
dc.contributor.author Aslan, B.
dc.date.accessioned 2025-11-10T16:57:33Z
dc.date.available 2025-11-10T16:57:33Z
dc.date.issued 2025
dc.description.abstract Accurate classification of date fruit varieties is essential for quality control, intelligent sorting, and agricultural sustainability. This study proposes a novel hybrid deep learning framework, named ResNet-ViT-SVM, to classify nine different date fruit varieties with high precision. The dataset consists of 1658 images distributed across nine classes, captured under controlled and real-world conditions. The approach consists of three stages: (i) initial classification using a fine-tuned ResNet50 convolutional neural network, (ii) reclassification using a Vision Transformer (ViT), and (iii) fusion of deep features from both models, followed by final classification via Support Vector Machines (SVM). The novelty of our approach lies in this unique integration of CNN, Transformer, and SVM components in a three-stage pipeline. Experimental results show that the ResNet50 and ViT models individually achieved classification accuracies of 93.05 % and 95.47 %, respectively, while the proposed ResNet-ViT-SVM hybrid model significantly outperformed them, achieving up to 99.40 %. As part of the ablation study, the hybrid model achieved 100 % accuracy on laboratory images and 83.11 % accuracy on field images captured under natural orchard conditions, confirming its effectiveness across both controlled and real-world scenarios. These findings demonstrate that the hybrid architecture offers strong generalization capability across different data domains and represents a highly accurate, contactless, and automated solution for agricultural product classification tasks. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1016/j.jfca.2025.108519
dc.identifier.issn 0889-1575
dc.identifier.issn 1096-0481
dc.identifier.scopus 2-s2.0-105019683261
dc.identifier.uri https://doi.org/10.1016/j.jfca.2025.108519
dc.identifier.uri https://hdl.handle.net/20.500.13091/10989
dc.language.iso en en_US
dc.publisher Academic Press Inc. en_US
dc.relation.ispartof Journal of Food Composition and Analysis en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Date Fruit Classification en_US
dc.subject Hybrid Model en_US
dc.subject ResNet50 en_US
dc.subject Support Vector Machine en_US
dc.subject Vision Transformer en_US
dc.title ResNet-ViT-SVM a New Hybrid Architecture Proposal and Experimental Comparisons on Date Fruit en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 56394515400
gdc.author.scopusid 57205362915
gdc.author.scopusid 59039381500
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Sabanci] Kadir, Department of Electrical and Electronic Engineering, Karamanoğlu Mehmetbey Üniversitesi, Karaman, Turkey; [Aslan] Muhammet Fatih, Department of Electrical and Electronic Engineering, Karamanoğlu Mehmetbey Üniversitesi, Karaman, Turkey; [Aslan] Busra Canan, Department of Electronics and Automation, Konya Technical University, Konya, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 108519
gdc.description.volume 148 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4415503158
gdc.identifier.wos WOS:001607159400001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.36
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.newscount 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Aslan, Büşra
gdc.wos.citedcount 0
relation.isAuthorOfPublication 32fde65f-89be-497e-9ec9-56a5fcd615d5
relation.isAuthorOfPublication.latestForDiscovery 32fde65f-89be-497e-9ec9-56a5fcd615d5

Files