Submersible Pump Vortex Detection Using Image Processing Technique and Neuro-Fuzzy

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

The vortex means the mass of air or water that spins around very fast that often faced in the agriculture irrigation systems used the pump. The undesired effects like loss of hydraulic performance, erosion, vibration and noise may occur because of the vortex in pump systems. It is important to detect and prevent vortex for the economic life and efficiency of the agriculture pump. The image processing and neuro-fuzzy based novel model is proposed for the detection of a vortex in the deep well pump used in the agriculture system with this paper. The used images and data - submergence, flow rate, the diameter of the pipe, power consumption, pressure values and noise values- is acquired from an experimental pump. The proposed approach consists of three steps; Neuro-Fuzzy Learning, Image Processing and Neuro-Fuzzy Testing. In the first step, the eightytwo data have employed for the training process of the Neuro-Fuzzy. Then, the images derived from a camera placed near the experimental pump are used to detect vortex in the image processing step. Finally, the relevant data to vortex cases have employed for the testing process of the NeuroFuzzy. The result of this study demonstrates that image processing and neuro-fuzzy based design can be successfully used to detect vortex formation. This paper has provided novel contributions in the vortex detection issue such as find out vortex cases by using image processing and NeuroFuzzy. The image processing method has shed light on the studies to be done in the classification of vortexes and the measurement of their strength.

Description

Keywords

Mühendislik Temel Alanı->Elektrik-Elektronik Mühendisliği, Adaptive Neural Fuzzy, Network Vortex, Detection, Submergence, Engineering, Image Processing Technique;Adaptive Neural Fuzzy Network;Vortex Detection;Submergence, Mühendislik

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

International Journal of Applied Mathematics Electronics and Computers

Volume

8

Issue

4

Start Page

163

End Page

172
PlumX Metrics
Captures

Mendeley Readers : 1

Downloads

1

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.