Aerial Lidar and Imaging Based Earth Surface Digitization and Data Characteristics Comparison

dc.contributor.author Altuntas, C.
dc.date.accessioned 2025-01-10T20:54:05Z
dc.date.available 2025-01-10T20:54:05Z
dc.date.issued 2024
dc.description.abstract The land topography and urban area digitization in the form of point clouds has become an indispensable method for providing many related services. Aerial point cloud measurements are made using active LiDAR or dense matching photogrammetry methods. Aerial LiDAR and dense image matching point clouds are obtained directly in the geodetic coordinate system thanks to navigation data. The geo-referencing based on ground control points require more labour and work time. All kinds of geometric and semantic information about the terrain can be extracted from the point cloud data. Therefore, it should have both location and visualization accuracy. The detection and definition accuracies of image area details depend on the scanning point density and its uniform distribution. In this study, after having been introduced the parameters of the aerial point cloud related to topographic measurement and urban area modelling, a comparison of these two source point clouds was made in areas with different land cover. The registration of a dense matching point cloud into a geospatial reference system was done with flight data and LiDAR measurements. As consequence, The LiDAR point density depends on the min angular step of the instrument scanning light, while the dense matching is relating to ground sampled distance of pixels. en_US
dc.identifier.doi 10.2478/jaes-2024-0022
dc.identifier.issn 2247-3769
dc.identifier.issn 2284-7197
dc.identifier.uri https://doi.org/10.2478/jaes-2024-0022
dc.identifier.uri https://hdl.handle.net/20.500.13091/9768
dc.language.iso en en_US
dc.publisher Sciendo en_US
dc.relation.ispartof Journal of Applied Engineering Sciences
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Lidar en_US
dc.subject Dense Image Matching en_US
dc.subject K-Nearest Neighbour en_US
dc.subject Georeferencing en_US
dc.subject Point Cloud Density en_US
dc.title Aerial Lidar and Imaging Based Earth Surface Digitization and Data Characteristics Comparison en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Altuntas, C.
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Altuntas, C.] Konya Tech Univ, Fac Engn & Nat Sci, Dept Geomat, Ardicli Mah Rauf Orbay Caddesi, TR-42250 Selcuklu, Konya, Turkiye en_US
gdc.description.endpage 185 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 178 en_US
gdc.description.volume 14 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q4
gdc.identifier.openalex W4405230209
gdc.identifier.wos WOS:001374977700001
gdc.index.type WoS
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.8007945E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.2440288E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0401 agriculture, forestry, and fisheries
gdc.oaire.sciencefields 04 agricultural and veterinary sciences
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.38747512
gdc.openalex.normalizedpercentile 0.58
gdc.opencitations.count 0
gdc.plumx.crossrefcites 1
gdc.plumx.newscount 1
gdc.wos.citedcount 0

Files