Gri Kurt ve Kril Sürü Optimizasyonları: Performans Analizi ve Karşılaştırması

No Thumbnail Available

Date

2023

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Pamukkale Univ

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Sürü davranışı, aynı yönde göç eden ve birlikte avlanan benzer büyüklükteki bir grup hayvan olarak tanımlanmaktadır. Gri kurtlar, genellikle sürüler halinde yaşamaktadırlar. Sürüdeki her gri kurdun ayrı bir görevi ve görevine göre aldığı farklı bir ismi bulunmaktadır. Diğer yandan Kril sürüleri, ekosistemin temelini oluşmaktadır. Kril sürüsünün hareketi iki sebebi bulunmaktadır. Birinci sebep, diğer canlılar için sürüler halinde yaşayan Kril’in avlanması ve yakalanmasının zor olmasıdır. Diğer sebebi ise, Kril sürüleri avlarını sürü hareketiyle kolayca yakalayabilmektedir. Gri Kurt Optimizasyonu (GWO) gri kurt sürü davranışından ilham alınırken, Kril Sürü Optimizasyonu (KHO) Kril sürü davranışından esinlenmiştir. Bu çalışmada GWO ve KHO algoritmaları detaylı bir şekilde incelenmiş ve yeterli bir başarıya sahip olup olmadıklarına karar verilmiştir. GWO ve KHO algoritmalarının sürü tabanlı olması, iki algoritmanın ortak bir özeliği olarak kabul edilmektedir. Ayrıca, GWO ve KHO performans analizinin yanı sıra 23 tek modlu, çok modlu ve sabit boyutlu çok modlu kıyaslama optimizasyon testleri ile karşılaştırılmıştır. Algoritmaların başarısı, çeşitli boyutlarda ({10, 20, 30, 50, 100, 500}) çalıştırılarak gösterilmiştir. İlaveten, GWO ve KHO algoritmaları Ağaç Tohum Algoritması (TSA), Parçacık Sürü Algoritması (PSO), Jaya algoritması, Aritmetik Optimizasyon Algoritması (AOA), Evrimsel Çiftleşme Algoritması (EMA), Ateş Şahini Optimize edicisi (FHO), Bal Porsuğu Algoritması (HBA) algoritmalarının performansı ile de karşılaştırılmıştır. Elde edilen tüm sonuçlar, istatistiksel testler ve şekillerle detaylı olarak gösterilmektedir. Sonuç olarak GWO ve KHO algoritmaları kendine öz özellikleri ile farklı test problemlerinde üstün başarı gösterirken, eski ve günümüzde yeni önerilmiş birçok algoritma ile de yarışır düzeydedir. GWO ve KHO algoritmalarının başarılarını tespit etmek için sadece klasik test fonksiyonları değil iki farklı kıyaslama test seti de kullanılmıştır. Bunlar CEC-C06 2019 fonksiyonları ve günümüzde güncel bir problem olan büyük veri problemidir. Aynı algoritmalar her iki problem içinde çalıştırılmış ve ortalama sonuçlara göre rank değerleri elde edilmiştir. CEC-C06 2019 fonksiyonlarında KHO iyi sonuçlar elde ederken büyük veri problemlerinde GWO iyi sonuçlar elde etmiştir. Bu çalışmada GWO ve KHO algoritmalarının başarıları üç farklı deneysel sette detaylı bir şekilde incelenmiş ve GWO ve KHO algoritmaları ile çalışacak araştırmacılar için ışık tutmaktadır.

Description

Keywords

Bilgisayar Bilimleri, Teori Ve Metotlar, Bilgisayar Bilimleri, Yapay Zeka

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

Volume

29

Issue

7

Start Page

711

End Page

736
PlumX Metrics
Captures

Mendeley Readers : 2

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.51088578

Sustainable Development Goals

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo