Chaotic Golden Ratio Guided Local Search for Big Data Optimization

dc.contributor.author Koçer, Havva Gül
dc.contributor.author Türkoğlu, Bahaeddin
dc.contributor.author Uymaz, Sait Ali
dc.date.accessioned 2023-08-03T19:00:12Z
dc.date.available 2023-08-03T19:00:12Z
dc.date.issued 2023
dc.description.abstract Biological systems where order arises from disorder inspires for many metaheuristic optimization techniques. Self-organization and evolution are the common behaviour of chaos and optimization algorithms. Chaos can be defined as an ordered state of disorder that is hypersensitive to initial conditions. Therefore, chaos can help create order out of disorder. In the scope of this work, Golden Ratio Guided Local Search method was improved with inspiration by chaos and named as Chaotic Golden Ratio Guided Local Search (CGRGLS). Chaos is used as a random number generator in the proposed method. The coefficient in the equation for determining adaptive step size was derived from the Singer Chaotic Map. Performance evaluation of the proposed method was done by using CGRGLS in the local search part of MLSHADE-SPA algorithm. The experimental studies carried out with the electroencephalographic signal decomposition based optimization problems, named as Big Data optimization problem (Big-Opt), introduced at the Congress on Evolutionary Computing Big Data Competition (CEC'2015). Experimental results have shown that the local search method developed using chaotic maps has an effect that increases the performance of the algorithm.& COPY; 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). en_US
dc.description.sponsorship Coordinatorship of Scientific Research Projects of Seluk University [18101012] en_US
dc.description.sponsorship Acknowledgments This work was supported by The Coordinatorship of Scientific Research Projects of Selcuk University [Grant number: 18101012] . en_US
dc.identifier.doi 10.1016/j.jestch.2023.101388
dc.identifier.issn 2215-0986
dc.identifier.scopus 2-s2.0-85150790243
dc.identifier.uri https://doi.org/10.1016/j.jestch.2023.101388
dc.identifier.uri https://hdl.handle.net/20.500.13091/4333
dc.language.iso en en_US
dc.publisher Elsevier - Division Reed Elsevier India Pvt Ltd en_US
dc.relation.ispartof Engineering Science and Technology-An International Journal-Jestech en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Big Data Optimization en_US
dc.subject Local search en_US
dc.subject Golden ratio en_US
dc.subject Chaotic map en_US
dc.subject Memetic algorithm en_US
dc.subject Differential Evolution Algorithm en_US
dc.subject Cooperative Coevolution en_US
dc.subject Framework en_US
dc.title Chaotic Golden Ratio Guided Local Search for Big Data Optimization en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Turkoglu, Bahaeddin/0000-0003-0255-8422
gdc.author.institutional
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Kocer, Havva Gul] Selcuk Univ, Konya, Turkiye; [Turkoglu, Bahaeddin] Nigde Omer Halisdemir Univ, Dept Comp Engn, Nigde, Turkiye; [Uymaz, Sait Ali] Konya Tech Univ, Dept Comp Engn, Konya, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 101388
gdc.description.volume 41 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4353060821
gdc.identifier.wos WOS:001026467100001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.6346136E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Chaotic map
gdc.oaire.keywords Golden ratio
gdc.oaire.keywords Big Data Optimization
gdc.oaire.keywords Local search
gdc.oaire.keywords Memetic algorithm
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.popularity 6.5319807E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.80987176
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 4
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 15
gdc.scopus.citedcount 15
gdc.virtual.author Uymaz, Sait Ali
gdc.wos.citedcount 17
relation.isAuthorOfPublication 83ffad2c-51a1-41f6-8ede-6d95ca8e9ac0
relation.isAuthorOfPublication.latestForDiscovery 83ffad2c-51a1-41f6-8ede-6d95ca8e9ac0

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2215098623000654-main.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format