Investigation of Low-Velocity Impact Behavior of Two-Way Rc Slab Strengthening With Basalt Trm Strips

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Springernature

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Reinforced concrete (RC) structural members could be subjected to impulsive impact loads due to various effects such as the collision of masses driven by rockfall, flood, landslide, avalanche, the crash of vehicles to structural elements in highway and seaway, airplane landing contact, the acting of explosion-induced air shock waves on structural elements as impulsive loads. The conventional design of RC slabs and similar structural members is carried out regarding vertical static and lateral dynamic loads such as earthquake and wind effects. However, the design phase mostly ignores impulsive loads such as impact and blast. Thus, these effects pose risks that the structures experience heavy damage or total collapse. Strengthening RC slabs with textile strips has become a preferred strengthening technique to prevent the collapse of structures and limit damage to structural elements. This study strengthened RC slabs with basalt textile reinforced mortar (TRM) strips in different widths, and layout patterns were tested for low-velocity impact load. In addition, the effects of BFRP fan-type anchors near the impact point on the behavior have also been investigated. The effect of various applied strengthening patterns on impact load transferred to specimens, dynamic responses such as acceleration, displacement, maximum strain, and dynamic failure modes occurred were investigated and interpreted in detail. The experimental results have also been compared with the improved finite element model (FEM) generated. It is demonstrated that the present FEM can be used to evaluate the impact response of the RC slabs with TRM strips.

Description

Keywords

RC slab, Impact load, Basalt TRM, Strengthening, Finite element analysis, Concrete Slabs

Turkish CoHE Thesis Center URL

Fields of Science

0211 other engineering and technologies, 02 engineering and technology, 0201 civil engineering

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Archives of Civil And Mechanical Engineering

Volume

24

Issue

1

Start Page

End Page

PlumX Metrics
Citations

Scopus : 1

Captures

Mendeley Readers : 5

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo