A Novel Study To Increase the Classification Parameters on Automatic Three-Class Covid-19 Classification From Ct Images, Including Cases From Turkey

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

A computed tomography (CT) scan is an important radiological imaging method in diagnosing pneumonia caused by SARS-CoV-2. Within the scope of the study, three classes of automatic classification - COVID-19 pneumonia, healthy, and other pneumonia - were carried out. Using deep learning as a classifier, a total of 6,377 CT images were used, including 3,364 COVID-19 pneumonia, 1,766 healthy, and 1,247 other pneumonia images. A total of seven architectures, including the most recent convolutional neural network (CNN) architectures, MobileNetV2, ResNet-101, Xception, Inceptionv3, GoogLeNet, EfficientNetB0, and DenseNet201, were used in the study. The classification results were obtained using the CT images, and they were calculated using the feature images obtained by applying local binary patterns on the CT images. The results were then combined with the help of a pipeline algorithm. The results revealed that the best overall accuracy result obtained by using CNN architectures could be improved by 4.87% with a two-step pipeline algorithm. In addition, significant improvements were achieved in all other measurement parameters within the scope of the study. At the end of the study, the highest sensitivity, specificity, accuracy, F-1 score, and Area under the Receiver Operating Characteristic Curve (AUC) values obtained for the COVID-19 pneumonia class were 0.9004, 0.8901, 0.8956, 0.9010, and 0.9600, respectively. The highest overall accuracy value was 0.8332. The most important output of the work carried out is the demonstration that the results obtained with the most successful CNN architectures used in previous studies can be significantly improved thanks to pipeline algorithms.

Description

Article; Early Access

Keywords

COVID-19, convolutional neural networks, CT lung classification, deep learning, local binary patterns, DenseNet201, Inceptionv3

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
5

Source

Journal of Experimental & Theoretical Artificial Intelligence

Volume

36

Issue

Start Page

563

End Page

583
PlumX Metrics
Citations

CrossRef : 3

Scopus : 2

Captures

Mendeley Readers : 5

SCOPUS™ Citations

2

checked on Feb 03, 2026

Web of Science™ Citations

3

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.97624756

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo