Error Analysis of Ofdm-Im Systems for Beyond 5g: the Effect of Iqi at Transceiver
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Open Access Color
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
It is well known that hardware impairments (HWIs) can worthy reduce the wireless system performance at high carrier frequencies by showing random effects. Most current researches for 5 GB systems assume that transmitters and receivers (transceivers) are perfectly equipped. But wireless transceivers (TxRx$$ {T}_x{R}_x $$) are affected by HWIs in practice. Considering the previous studies in the literature, it is reported that HWIs have devastating effects on the performance of OFDM and OFDM-index modulation (IM) systems with fading channels. In this paper, in-phase and quadrature phase imbalance (IQI), which is the one of most HWIs between transmitter and receiver in wireless communication systems, is examined on OFDM-IM system over Rayleigh and Nakagami-m$$ m $$ fading channels. Two well-known detectors, the maximum likelihood (ML) detector and the log-likelihood ratio (LLR) detector are used under the effect of the IQI at TxRx$$ {T}_x{R}_x $$. Error performance analyzes over fading channels of the IQI effect on OFDM-IM system are realized first theoretically and then by computer simulations. Results obtained for the presence of IQI at TxRx$$ {T}_x{R}_x $$ show that a performance evaluation based only on the presence of IQI in the receiver would be optimistic and misleading in terms of the performance of real-life OFDM-IM systems. Most current researches for 5 GB systems assume that transmitters and receivers (transceivers) are perfectly equipped. In this paper, in-phase and quadrature phase imbalance (IQI), which is the one of most HWIs between transmitter and receiver in wireless communication systems, is examined on OFDM-IM system over Rayleigh and Nakagami-m fading channels. Results obtained for the presence of IQI at transceiver show that a performance evaluation based only on the presence of IQI in the receiver would be optimistic and misleading in terms of the performance of real-life OFDM-IM systems. image
Description
ORCID
Keywords
hardware impairment (HWI), index modulation (IM), in-phase and quadrature phase imbalance (IQI), log-likelihood ratio (LLR) detector, maximum likelihood (ML), Detector, index modulation (IM), maximum likelihood (ML), in-phase and quadrature phase imbalance (IQI), log-likelihood ratio (LLR) detector, hardware impairment (HWI)
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q3
Scopus Q
Q2

OpenCitations Citation Count
N/A
Source
International journal of communication systems
Volume
37
Issue
Start Page
End Page
PlumX Metrics
Citations
Scopus : 1
SCOPUS™ Citations
1
checked on Feb 03, 2026
Google Scholar™

OpenAlex FWCI
0.73833695
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

6
CLEAN WATER AND SANITATION

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

14
LIFE BELOW WATER

15
LIFE ON LAND


