Characterization of Unmodified and Modified Apricot Kernel Shell/Epoxy Resin Biocomposites by Ultrasonic Wave Velocities

Loading...
Thumbnail Image

Date

2022

Authors

Kocaman, Süheyla
Ahmetli, Gülnare

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

The main goal of this research was to develop highly durable, low-cost eco-friendly biocomposites from apricot kernel shell (AKS) wastes and ultrasonic characterization of AKS-based obtained biocomposites. Natural AKS wastes were chemically modified using 5 wt% sodium hydroxide (NaOH) and 99 wt% glacial acetic acid (AA). These modified apricot kernel shells (MAKS) and unmodified apricot kernel shells (UMAKS) were added into bisphenol-A type epoxy resin (ER) in varied compositions such as 10-50 wt% to prepare the MAKS/ER and the UMAKS/ER biocomposites. The epoxy resin-mixture in the weight ratios of resin/hardener/accelerator was 100:30:1. The effect of AKS powder ratios and modifiers on the elastic properties (Young's moduli [E], bulk moduli [K], longitudinal moduli [L], shear moduli [G], and Poisson's ratio [mu]), density (rho), damping properties (attenuation coefficient [alpha], loss tangent [tan delta], and quality factor [Q]), ultrasonic micro-hardness (H), and acoustic impedance (Z) of biocomposites was investigated by the ultrasonic testing (UT) method. The morphological structure of the ER and biocomposites was figured out using scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The results revealed an increase in elastic properties of most of the AKS/ER biocomposites compared to the neat ER. On the other hand, results have shown that SEM and XRD images' analysis confirmed the amorphous structure of ER and biocomposites. The highest rho, v(L), v(S), L, G, E, H, and Z values were obtained in MAKS-AA/ER-5 biocomposite. Thus, it can be stated that the MAKS-AA/ER-5 biocomposite sample has the best mechanical properties. Also, the results revealed that the MAKS-AA/ER-1 sample can be used as an alternative material for its high Q-factor value instead of wood in producing musical tools.

Description

Keywords

Apricot kernel shell, Elastic properties, Damping properties, Ultrasonic testing, Biocomposites, Fiber-Reinforced Composites, Mechanical-Properties, Natural Fiber, Green, Behavior, Tensile, Bamboo, Shell

Turkish CoHE Thesis Center URL

Fields of Science

02 engineering and technology, 0210 nano-technology

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
9

Source

Polymer Bulletin

Volume

80

Issue

Start Page

5529

End Page

5552
PlumX Metrics
Citations

CrossRef : 1

Scopus : 14

Captures

Mendeley Readers : 11

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.52622788

Sustainable Development Goals

SDG data is not available