An Improved Artificial Bee Colony Algorithm for Balancing Local and Global Search Behaviors in Continuous Optimization

dc.contributor.author Haklı, Hüseyin
dc.contributor.author Kıran, Mustafa Servet
dc.date.accessioned 2021-12-13T10:29:49Z
dc.date.available 2021-12-13T10:29:49Z
dc.date.issued 2020
dc.description.abstract The artificial bee colony, ABC for short, algorithm is population-based iterative optimization algorithm proposed for solving the optimization problems with continuously-structured solution space. Although ABC has been equipped with powerful global search capability, this capability can cause poor intensification on found solutions and slow convergence problem. The occurrence of these issues is originated from the search equations proposed for employed and onlooker bees, which only updates one decision variable at each trial. In order to address these drawbacks of the basic ABC algorithm, we introduce six search equations for the algorithm and three of them are used by employed bees and the rest of equations are used by onlooker bees. Moreover, each onlooker agent can modify three dimensions or decision variables of a food source at each attempt, which represents a possible solution for the optimization problems. The proposed variant of ABC algorithm is applied to solve basic, CEC2005, CEC2014 and CEC2015 benchmark functions. The obtained results are compared with results of the state-of-art variants of the basic ABC algorithm, artificial algae algorithm, particle swarm optimization algorithm and its variants, gravitation search algorithm and its variants and etc. Comparisons are conducted for measurement of the solution quality, robustness and convergence characteristics of the algorithms. The obtained results and comparisons show the experimentally validation of the proposed ABC variant and success in solving the continuous optimization problems dealt with the study. en_US
dc.identifier.doi 10.1007/s13042-020-01094-7
dc.identifier.issn 1868-8071
dc.identifier.issn 1868-808X
dc.identifier.scopus 2-s2.0-85080024732
dc.identifier.uri https://doi.org/10.1007/s13042-020-01094-7
dc.identifier.uri https://hdl.handle.net/20.500.13091/692
dc.language.iso en en_US
dc.publisher SPRINGER HEIDELBERG en_US
dc.relation.ispartof INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Bee Colony en_US
dc.subject Continuous Optimization en_US
dc.subject Numeric Function en_US
dc.subject Search Strategy en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Abc Algorithm en_US
dc.subject Strategy en_US
dc.subject Performance en_US
dc.title An Improved Artificial Bee Colony Algorithm for Balancing Local and Global Search Behaviors in Continuous Optimization en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Hakli, Huseyin/0000-0001-5019-071X
gdc.author.scopusid 56285296000
gdc.author.scopusid 54403096500
gdc.author.wosid Hakli, Huseyin/ABC-2521-2021
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 2076 en_US
gdc.description.issue 9 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 2051 en_US
gdc.description.volume 11 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3008681130
gdc.identifier.wos WOS:000515959300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 37.0
gdc.oaire.influence 4.250055E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.398069E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 6.16810104
gdc.openalex.normalizedpercentile 0.97
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 42
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 33
gdc.plumx.scopuscites 51
gdc.scopus.citedcount 51
gdc.virtual.author Kıran, Mustafa Servet
gdc.wos.citedcount 39
relation.isAuthorOfPublication 1b4c0009-61df-4135-a8d5-ed32324e2787
relation.isAuthorOfPublication.latestForDiscovery 1b4c0009-61df-4135-a8d5-ed32324e2787

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s13042-020-01094-7.pdf
Size:
2.94 MB
Format:
Adobe Portable Document Format