Experimental Analysis of Various Deep Learning Methods for Predicting Displacements in an Open Pit Coal Mine

dc.contributor.author Ozsen, Hakan
dc.contributor.author Kaygusuz, Berk
dc.date.accessioned 2025-10-10T15:17:53Z
dc.date.available 2025-10-10T15:17:53Z
dc.date.issued 2025
dc.description.abstract Slope failure is a problem that can occur on slopes formed by natural or unnatural means for various reasons and as a result, can cause serious loss of life and property. This is also crucial in open pit mines. Therefore, it is critical to constantly monitor slope deformations and predict a possible slide that may occur in the future. Predicting the initial trend behavior of a created slope is at least as important as estimating slope failure. Therefore, in this study, we tried to estimate slope stability with a small number of deformation data. In this study we aimed to compare several deep learning methods in using time series prediction with limited data. For this purpose, we applied MLP, GRU, LSTM Networks, biLSTM and a hybrid structure of CNN-RNN methods. We utilized data taken from three stations settled in an open pit mine slope and predicted the compound deformation value of x-, y- and z-direction in these slopes. The performance was compared with respect to the root mean squared error (RMSE) and coefficient of correction (R2) values. The minimum RMSE was obtained as 0.2293 and maximum R2 was reached as 0.9984 by the GRU method on the third station's data. en_US
dc.identifier.doi 10.1007/s11069-025-07629-x
dc.identifier.issn 0921-030X
dc.identifier.issn 1573-0840
dc.identifier.scopus 2-s2.0-105015519380
dc.identifier.uri https://doi.org/10.1007/s11069-025-07629-x
dc.identifier.uri https://hdl.handle.net/20.500.13091/10858
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Natural Hazards en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Slope Stability en_US
dc.subject Slope Deformation en_US
dc.subject Deep Learning en_US
dc.subject RNN en_US
dc.subject CNN en_US
dc.subject LSTM en_US
dc.subject GRU en_US
dc.title Experimental Analysis of Various Deep Learning Methods for Predicting Displacements in an Open Pit Coal Mine en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 23486629900
gdc.author.scopusid 60090741900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Ozsen, Hakan] Konya Tech Univ, Dept Min Engn, Konya, Turkiye; [Kaygusuz, Berk] Konya Tech Univ, Grad Educ Inst, Konya, Turkiye en_US
gdc.description.endpage 20654
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 20629
gdc.description.volume 121
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W7081522122
gdc.identifier.wos WOS:001566840500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.534052E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.5018755E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 4.81974515
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Özşen, Hakan
gdc.wos.citedcount 1
relation.isAuthorOfPublication c8dad33b-4d55-4f4b-b5a0-d4d9a200697f
relation.isAuthorOfPublication.latestForDiscovery c8dad33b-4d55-4f4b-b5a0-d4d9a200697f

Files