Highly Effective Injection Composites With Fly Ash and Microsilica for Soil Stabilization

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Injection composites based on mineral binders are widely used for soil stabilization, using jet grouting technology to solve various geotechnical problems. Cement, which contains toxic components and worsens the ecology of the environment, is typically the main mineral component used to manufacture injection composites. Reducing cement consumption in the production of building materials is currently of great importance. This study developed highly effective, environmentally friendly injection composites for soil stabilization based on three mineral components: Portland cement, fly ash (FA), and microsilica (MS). FA was introduced into the composites as a partial Portland cement substitute, in amounts ranging from 5 to 50% in 5% increments. The properties of fresh and hardened composites, including the density, flow rate, water separation, compressive strength at 7 and 28 days, and the structure and phase composition of the composites, were studied. The inclusion of FA in the composition of composites contributes to a decrease in density by 16.9%, from 1.89 g/cm3 to 1.57 g/cm3, and cone spread by 9%, from 30.1 cm to 27.4 cm, and an increase in water bleeding by 91.4%, from 3.5% to 6.7%, respectively. Based on the results of the experimental studies, the most effective dosage of FA was determined, which amounted to 20%. An increase in compressive strength was recorded for composites at the age of 7 days of 8.3%, from 33.6 MPa to 36.4 MPa, and for compressive strength at the age of 28 days of 9.4%, from 41.3 MPa to 45.2 MPa, respectively. SEM and XRD analysis results show that including FA and MS promotes the formation of additional calcium hydrosilicates (CSH) and the development of a compact and organized composite structure. The developed composites with FA contents of up to 50% exhibit the required properties and can be used for their intended purpose in real-world construction for soil stabilization.

Description

Keywords

Fly Ash, Injection Composite, Soil Stabilization, Microsilica, Composite Structure, Composite Density, Composite Compressive Strength

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Journal of Composites Science

Volume

9

Issue

12

Start Page

675

End Page

PlumX Metrics
Citations

Scopus : 0

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.