Finger Vein Recognition by Combining Anisotropic Diffusion and a New Feature Extraction Method

dc.contributor.author Titrek, Fatih
dc.contributor.author Baykan, Ömer Kaan
dc.date.accessioned 2021-12-13T10:38:50Z
dc.date.available 2021-12-13T10:38:50Z
dc.date.issued 2020
dc.description.abstract In recent years, Finger Vein (FV) Recognition System is frequently used where personal security is required. Image distortion caused by light scattering in the tissue is one of the major problems about the visibility of the FV. In this study, Homomorphic Filter and Anisotropic Diffusion are used for removing the light scattering problem in our captured FV image and to increase the visibility of the veined region. Novelty of the study is proposing two new features: Horizontal Total Proportion (HTP) and Vertical Total Proportion (VTP). These two new features were used together with both spatial and frequency domain features and it was observed that the success rates obtained by our attributes were significantly increased. Experimental results demonstrate that the proposed HTP and VTP features are effective and reliable to improve the classification success in FV recognition problem. According to the experiments, the use of Perona-Malik and Homomorphic Filter together has been shown to reduce the light scattering problem and improve vascular visibility by removing the noise in the finger vein image. In this study, four different classifiers are used: Complex Tree, Ensemble, Support Vector Machines (SVM), K-Nearest Neighbors (KNN). The best success rate was achieved by using the KNN classifier. en_US
dc.identifier.doi 10.18280/ts.370310
dc.identifier.issn 0765-0019
dc.identifier.issn 1958-5608
dc.identifier.scopus 2-s2.0-85089308484
dc.identifier.uri https://doi.org/10.18280/ts.370310
dc.identifier.uri https://hdl.handle.net/20.500.13091/1387
dc.language.iso en en_US
dc.publisher INT INFORMATION & ENGINEERING TECHNOLOGY ASSOC en_US
dc.relation.ispartof TRAITEMENT DU SIGNAL en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Anisotropic Diffusion en_US
dc.subject Biometrics en_US
dc.subject Feature Extraction en_US
dc.subject Finger Vein Recognition en_US
dc.subject Hvtp Features en_US
dc.subject Enhancement en_US
dc.subject Network en_US
dc.subject Fusion en_US
dc.subject Filter en_US
dc.subject Gabor en_US
dc.title Finger Vein Recognition by Combining Anisotropic Diffusion and a New Feature Extraction Method en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57218489194
gdc.author.scopusid 23090480800
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 441 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 433 en_US
gdc.description.volume 37 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W3046033807
gdc.identifier.wos WOS:000555439900010
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5423272E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.1023385E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.59110271
gdc.openalex.normalizedpercentile 0.67
gdc.opencitations.count 1
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Titrek, Fatih
gdc.virtual.author Baykan, Ömer Kaan
gdc.wos.citedcount 4
relation.isAuthorOfPublication 515bde6b-b781-4c73-9178-9d8265037032
relation.isAuthorOfPublication aea7aa1f-27e5-46d6-9fb7-317283404e6b
relation.isAuthorOfPublication.latestForDiscovery 515bde6b-b781-4c73-9178-9d8265037032

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
37.03_10.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format