Analysis of the Relationship Between Cross Capital Flows and Stock Exchange Index with Machine Learning

No Thumbnail Available

Date

2024

Authors

Akusta, Ahmet

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Bu çalışma, çapraz sermaye akımları analizini kullanarak BIST100 hisse senedi endeksinin tahminini araştırmaktadır. Finansal zaman serilerinin tahminindeki karmaşıklıkları ele almak için öznitelik mühendisliği ve Orthogonal Matching Pursuit (OMP) modeli kullanılmıştır. Önyargısız bir model sağlamak için gecikmeli değerler, hareketli ortalamalar ve volatilite ölçümleri gibi öznitelikler titizlikle seçilmiş ve normalize edilmiştir. OMP modeli, finansal verilerin çok boyutluluğu sorununu çözmek için optimize edilmiş ve seyreklik kısıtı aracılığıyla aşırı uyumdan kaçınılmıştır. Bu yaklaşımla, endeks varyansını yakalama yeteneğini gösteren 0.88 R-kare puanı elde edilmiştir. Gerçek ve tahmin edilen değerler arasındaki görsel karşılaştırmalar, modelin doğruluğunu teyit etmektedir. Bu makale, karmaşık örüntüleri ayırt edebilen ve yatırım stratejileri için değerli içgörüler sunan modeller geliştirmede metodolojik hassasiyetin önemini vurgulamaktadır. Çalışmanın sonuçları, sermaye hareketleri ve makroekonomik değişkenlerin, finansal piyasaların karmaşıklığına rağmen Borsa Endeksi tahmini için makine öğrenimi ile iyi bir uyumlu olduğunu göstermektedir.

Description

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

0502 economics and business, 05 social sciences

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Abant Sosyal Bilimler Dergisi

Volume

24

Issue

1

Start Page

244

End Page

263
PlumX Metrics
Captures

Mendeley Readers : 3

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.86956809

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.