A Generalizable D-Vio and Its Fusion With Gnss/imu for Improved Autonomous Vehicle Localization
| dc.contributor.author | Yusefi, A. | |
| dc.contributor.author | Durdu, A. | |
| dc.contributor.author | Bozkaya, F. | |
| dc.contributor.author | Tiglioglu, S. | |
| dc.contributor.author | Yilmaz, A. | |
| dc.contributor.author | Sungur, C. | |
| dc.date.accessioned | 2023-11-11T09:03:40Z | |
| dc.date.available | 2023-11-11T09:03:40Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | An autonomous vehicle must be able to locate itself precisely and reliably in a large-scale outdoor area. In an attempt to enhance the localization of an autonomous vehicle based on Global Navigation Satellite System (GNSS)/Camera/Inertial Measurement Unit (IMU), when GNSS signals are interfered with or obstructed by reflected signals, a multi-step correction filter is used to smooth the inaccurate GNSS data obtained. The proposed solutions integrate a high amount of data from several sensors to compensate for the sensors' individual weaknesses. Additionally, this work proposes a Generalizable Deep Visual Intertial Odometry (GD-VIO) to better locate the vehicle in the event of GNSS outages. The algorithms suggested in this research have been tested through real-world experimentations, demonstrating that they are able to deliver accurate and trustworthy vehicle pose estimation. IEEE | en_US |
| dc.identifier.doi | 10.1109/TIV.2023.3316361 | |
| dc.identifier.issn | 2379-8858 | |
| dc.identifier.issn | 2379-8904 | |
| dc.identifier.scopus | 2-s2.0-85173015693 | |
| dc.identifier.uri | https://doi.org/10.1109/TIV.2023.3316361 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/4776 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | IEEE Transactions on Intelligent Vehicles | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Autonomous vehicles | en_US |
| dc.subject | Autonomous Vehicles | en_US |
| dc.subject | Cameras | en_US |
| dc.subject | Deep Visual Inertial Odometry | en_US |
| dc.subject | Global navigation satellite system | en_US |
| dc.subject | GNSS | en_US |
| dc.subject | IMU | en_US |
| dc.subject | Localization | en_US |
| dc.subject | Location awareness | en_US |
| dc.subject | Odometry | en_US |
| dc.subject | Sensor Fusion | en_US |
| dc.subject | Simultaneous localization and mapping | en_US |
| dc.subject | Visualization | en_US |
| dc.subject | Autonomous vehicles | en_US |
| dc.subject | Global positioning system | en_US |
| dc.subject | Autonomous Vehicles | en_US |
| dc.subject | Deep visual inertial odometry | en_US |
| dc.subject | Global Navigation Satellite Systems | en_US |
| dc.subject | Inertial measurements units | en_US |
| dc.subject | Localisation | en_US |
| dc.subject | Location awareness | en_US |
| dc.subject | Odometry | en_US |
| dc.subject | Sensor fusion | en_US |
| dc.subject | Simultaneous localization and mapping | en_US |
| dc.subject | Cameras | en_US |
| dc.title | A Generalizable D-Vio and Its Fusion With Gnss/imu for Improved Autonomous Vehicle Localization | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | … | |
| gdc.author.scopusid | 57221601191 | |
| gdc.author.scopusid | 55364612200 | |
| gdc.author.scopusid | 58538957200 | |
| gdc.author.scopusid | 58538473600 | |
| gdc.author.scopusid | 57067174700 | |
| gdc.author.scopusid | 24492409100 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KTÜN | en_US |
| gdc.description.departmenttemp | Yusefi, A., MPG Machinery Production Group Inc. Co., Konya, Turkey; Durdu, A., Robotics Automation Control Laboratory (RAC-LAB), Department of Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey; Bozkaya, F., Robotics Automation Control Laboratory (RAC-LAB), Department of Computer Engineering, Konya Technical University, Konya, Turkey; Tiglioglu, S., Robotics Automation Control Laboratory (RAC-LAB), Department of Computer Engineering, Konya Technical University, Konya, Turkey; Yilmaz, A., Photogrammetric Computer Vision Laboratory, Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Ohio, USA; Sungur, C., Robotics Automation Control Laboratory (RAC-LAB), Department of Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey | en_US |
| gdc.description.endpage | 15 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1 | en_US |
| gdc.description.volume | 9 | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4386824816 | |
| gdc.identifier.wos | WOS:001173317800239 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 2.6004792E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 4.7993636E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 4.67955241 | |
| gdc.openalex.normalizedpercentile | 0.94 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.crossrefcites | 5 | |
| gdc.plumx.mendeley | 14 | |
| gdc.plumx.scopuscites | 7 | |
| gdc.scopus.citedcount | 6 | |
| gdc.virtual.author | Durdu, Akif | |
| gdc.virtual.author | Sungur, Cemil | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | 230d3f36-663e-4fae-8cdd-46940c9bafea | |
| relation.isAuthorOfPublication | 5afbc8e5-34e4-41c7-9e7b-ee7412206e11 | |
| relation.isAuthorOfPublication.latestForDiscovery | 230d3f36-663e-4fae-8cdd-46940c9bafea |
