Reweighting Simulated Events Using Machine-Learning Techniques in the CMS Experiment
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
GOLD
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
Yes
Abstract
Data analyses in particle physics rely on an accurate simulation of particle collisions and a detailed simulation of detector effects to extract physics knowledge from the recorded data. Event generators together with a geant-based simulation of the detectors are used to produce large samples of simulated events for analysis by the LHC experiments. These simulations come at a high computational cost, where the detector simulation and reconstruction algorithms have the largest CPU demands. This article describes how machine-learning (ML) techniques are used to reweight simulated samples obtained with a given set of parameters to samples with different parameters or samples obtained from entirely different simulation programs. The ML reweighting method avoids the need for simulating the detector response multiple times by incorporating the relevant information in a single sample through event weights. Results are presented for reweighting to model variations and higher-order calculations in simulated top quark pair production at the LHC. This ML-based reweighting is an important element of the future computing model of the CMS experiment and will facilitate precision measurements at the High-Luminosity LHC.
Description
Chatterjee, Suman/0000-0003-2660-0349; Sahasransu, Abanti Ranadhir/0000-0003-1505-1743; Grandi, Claudio/0000-0001-5998-3070; Bortignon, Pierluigi/0000-0002-5360-1454; Mitselmakher, Guenakh/0000-0001-5745-3658; Csanad, Mate/0000-0002-3154-6925; Papageorgakis, Christos/0000-0003-4548-0346; De Moor, Alexandre/0000-0001-5964-1935; Ivanov, Andrew/0000-0002-9270-5643; Sculac, Ana/0000-0001-7938-7559; Navarro-Tobar, Alvaro/0000-0003-3606-1780; Gomez Espinosa, Tirso Alejandro/0000-0002-9443-7769; De La Cruz Burelo, Eduard/0000-0002-7469-6974; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Karneyeu, Anton/0000-0001-9983-1004; Barroso Ferreira, Mapse/0000-0003-3904-0571; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Reichert, Joseph/0000-0003-2110-8021; /0000-0002-6047-4211; Moureaux, Louis/0000-0002-2310-9266; Azzi, Patrizia/0000-0002-3129-828X; Colaleo, Anna/0000-0002-0711-6319; Ecklund, Karl/0000-0002-6976-4637; Usai, Emanuele/0000-0001-9323-2107; Dozen, Candan/0000-0002-4301-634X; Mrenna, Stephen/0000-0001-8731-160X; Delgado Peris, Antonio/0000-0002-8511-7958; Tapper, Alexander/0000-0003-4543-864X; Garcia, Francisco/0000-0002-4023-7964; Mitra, Soureek/0000-0002-3060-2278; Vannerom, David/0000-0002-2747-5095; Pasztor, Gabriella/0000-0003-0707-9762; Grunewald, Martin/0000-0002-5754-0388; Bruschini, Davide/0000-0001-7248-2967; Schwandt, Joern/0000-0002-0052-597X; Kunnawalkam Elayavalli, Raghav/0000-0002-9202-1516; Klyukhin, Vyacheslav/0000-0002-8577-6531; Yazgan, Efe/0000-0001-5732-7950; Singh, Jasbir/0000-0001-9029-2462; Hall, Geoffrey/0000-0002-6299-8385; Kyberd, Paul/0000-0002-7353-7090; D'Anzi, Brunella/0000-0002-9361-3142; Pesaresi, Mark/0000-0002-9759-1083; Tytgat, Michael/0000-0002-3990-2074; Ferencek, Dinko/0000-0001-9116-1202; Geurts, Frank/0000-0003-2856-9090; Zhang, Yousen/0000-0002-6812-761X; Wilson, Graham/0000-0003-0917-4763; Ruiz, Jose/0000-0002-3306-0363; Hussain, Priya Sajid/0000-0002-4825-5278; D'Enterria, David/0000-0002-5754-4303; Perez Adan, Danyer/0000-0003-3416-0726; Al Kadhim, Ali/0000-0003-3490-8407; You, Zhengyun/0000-0001-8324-3291; Kontaxakis, Pantelis/0000-0002-4860-5979; Legger, Federica/0000-0003-1400-0709; Diaz, Daniel/0000-0001-6834-1176; Gutsche, Oliver/0000-0002-8015-9622; Smith, Nicholas/0000-0002-0324-3054; Fouz Iglesias, Maria Cruz/0000-0003-2950-976X; Giacomelli, Paolo/0000-0002-6368-7220
Keywords
Physics - Instrumentation and Detectors, [PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex], PARTICLE PHYSICS;LARGE HADRON COLLIDER;CMS, CMS, Physics, ddc:530, Regular Article - Computing, Software and Data Science, FOS: Physical sciences, QC770-798, Instrumentation and Detectors (physics.ins-det), LARGE HADRON COLLIDER, Astrophysics, 530, High Energy Physics - Experiment, QB460-466, High Energy Physics - Experiment (hep-ex), [PHYS.PHYS.PHYS-INS-DET] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det], Density-Estimation, Nuclear and particle physics. Atomic energy. Radioactivity, PARTICLE PHYSICS, Hadron Collider, CMS, Machine Learning,, info:eu-repo/classification/ddc/530, Data reduction; Elementary particles; Learning algorithms; Learning systems; Particle detectors, High energy physics, LHC, Experimental particle physics
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q2
Scopus Q
Q1

OpenCitations Citation Count
N/A
Source
European Physical Journal C
Volume
85
Issue
5
Start Page
End Page
PlumX Metrics
Captures
Mendeley Readers : 3
SCOPUS™ Citations
1
checked on Feb 03, 2026
Web of Science™ Citations
1
checked on Feb 03, 2026
Google Scholar™


