Reweighting Simulated Events Using Machine-Learning Techniques in the CMS Experiment

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

GOLD

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

Yes
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Data analyses in particle physics rely on an accurate simulation of particle collisions and a detailed simulation of detector effects to extract physics knowledge from the recorded data. Event generators together with a geant-based simulation of the detectors are used to produce large samples of simulated events for analysis by the LHC experiments. These simulations come at a high computational cost, where the detector simulation and reconstruction algorithms have the largest CPU demands. This article describes how machine-learning (ML) techniques are used to reweight simulated samples obtained with a given set of parameters to samples with different parameters or samples obtained from entirely different simulation programs. The ML reweighting method avoids the need for simulating the detector response multiple times by incorporating the relevant information in a single sample through event weights. Results are presented for reweighting to model variations and higher-order calculations in simulated top quark pair production at the LHC. This ML-based reweighting is an important element of the future computing model of the CMS experiment and will facilitate precision measurements at the High-Luminosity LHC.

Description

Chatterjee, Suman/0000-0003-2660-0349; Sahasransu, Abanti Ranadhir/0000-0003-1505-1743; Grandi, Claudio/0000-0001-5998-3070; Bortignon, Pierluigi/0000-0002-5360-1454; Mitselmakher, Guenakh/0000-0001-5745-3658; Csanad, Mate/0000-0002-3154-6925; Papageorgakis, Christos/0000-0003-4548-0346; De Moor, Alexandre/0000-0001-5964-1935; Ivanov, Andrew/0000-0002-9270-5643; Sculac, Ana/0000-0001-7938-7559; Navarro-Tobar, Alvaro/0000-0003-3606-1780; Gomez Espinosa, Tirso Alejandro/0000-0002-9443-7769; De La Cruz Burelo, Eduard/0000-0002-7469-6974; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Karneyeu, Anton/0000-0001-9983-1004; Barroso Ferreira, Mapse/0000-0003-3904-0571; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Reichert, Joseph/0000-0003-2110-8021; /0000-0002-6047-4211; Moureaux, Louis/0000-0002-2310-9266; Azzi, Patrizia/0000-0002-3129-828X; Colaleo, Anna/0000-0002-0711-6319; Ecklund, Karl/0000-0002-6976-4637; Usai, Emanuele/0000-0001-9323-2107; Dozen, Candan/0000-0002-4301-634X; Mrenna, Stephen/0000-0001-8731-160X; Delgado Peris, Antonio/0000-0002-8511-7958; Tapper, Alexander/0000-0003-4543-864X; Garcia, Francisco/0000-0002-4023-7964; Mitra, Soureek/0000-0002-3060-2278; Vannerom, David/0000-0002-2747-5095; Pasztor, Gabriella/0000-0003-0707-9762; Grunewald, Martin/0000-0002-5754-0388; Bruschini, Davide/0000-0001-7248-2967; Schwandt, Joern/0000-0002-0052-597X; Kunnawalkam Elayavalli, Raghav/0000-0002-9202-1516; Klyukhin, Vyacheslav/0000-0002-8577-6531; Yazgan, Efe/0000-0001-5732-7950; Singh, Jasbir/0000-0001-9029-2462; Hall, Geoffrey/0000-0002-6299-8385; Kyberd, Paul/0000-0002-7353-7090; D'Anzi, Brunella/0000-0002-9361-3142; Pesaresi, Mark/0000-0002-9759-1083; Tytgat, Michael/0000-0002-3990-2074; Ferencek, Dinko/0000-0001-9116-1202; Geurts, Frank/0000-0003-2856-9090; Zhang, Yousen/0000-0002-6812-761X; Wilson, Graham/0000-0003-0917-4763; Ruiz, Jose/0000-0002-3306-0363; Hussain, Priya Sajid/0000-0002-4825-5278; D'Enterria, David/0000-0002-5754-4303; Perez Adan, Danyer/0000-0003-3416-0726; Al Kadhim, Ali/0000-0003-3490-8407; You, Zhengyun/0000-0001-8324-3291; Kontaxakis, Pantelis/0000-0002-4860-5979; Legger, Federica/0000-0003-1400-0709; Diaz, Daniel/0000-0001-6834-1176; Gutsche, Oliver/0000-0002-8015-9622; Smith, Nicholas/0000-0002-0324-3054; Fouz Iglesias, Maria Cruz/0000-0003-2950-976X; Giacomelli, Paolo/0000-0002-6368-7220

Keywords

Physics - Instrumentation and Detectors, [PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex], PARTICLE PHYSICS;LARGE HADRON COLLIDER;CMS, CMS, Physics, ddc:530, Regular Article - Computing, Software and Data Science, FOS: Physical sciences, QC770-798, Instrumentation and Detectors (physics.ins-det), LARGE HADRON COLLIDER, Astrophysics, 530, High Energy Physics - Experiment, QB460-466, High Energy Physics - Experiment (hep-ex), [PHYS.PHYS.PHYS-INS-DET] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det], Density-Estimation, Nuclear and particle physics. Atomic energy. Radioactivity, PARTICLE PHYSICS, Hadron Collider, CMS, Machine Learning,, info:eu-repo/classification/ddc/530, Data reduction; Elementary particles; Learning algorithms; Learning systems; Particle detectors, High energy physics, LHC, Experimental particle physics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

European Physical Journal C

Volume

85

Issue

5

Start Page

End Page

PlumX Metrics
Captures

Mendeley Readers : 3

SCOPUS™ Citations

1

checked on Feb 03, 2026

Web of Science™ Citations

1

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.