Identification of Apnea-Hypopnea Index Subgroups Based on Multifractal Detrended Fluctuation Analysis and Nasal Cannula Airflow Signals

dc.contributor.author Göğüş, Fatma Zehra
dc.contributor.author Tezel, Gülay
dc.contributor.author Özşen, Seral
dc.contributor.author Küççüktürk, Serkan
dc.contributor.author Vatansev, Hülya
dc.contributor.author Koca, Yasin
dc.date.accessioned 2021-12-13T10:29:44Z
dc.date.available 2021-12-13T10:29:44Z
dc.date.issued 2020
dc.description.abstract The diagnosis of obstructive sleep apnea hypopnea syndrome (OSASH) and making decision of treatment necessity with positive airway pressure (PAP) therapy are time consuming and costly processes. There were different approaches in literature to accomplish these processes successfully and as soon as possible by using physiological signals with selected feature extraction and machine learning techniques. To reach fastest and true result, selection of optimal physiological signal(s), feature extraction and learning techniques is important. This study aimed to identify apnea hypopnea index (AHI) subgroups of 120 subjects and thus diagnose of OSASH and determine the need for PAP therapy by applying Multifractal Detrended Fluctuation Analysis (MDFA) as a feature extraction technique to only single channel nasal cannula airflow signals. After the extracted features from airflow signals with MDFA were gone through feature selection phase, the selected features were evaluated in Random Forest classifier. With the implementation of all processes, OSAHS patients were discriminated from healthy subjects with 95.83% accuracy, 96.88% sensitivity and 93.75% specificity. 93.75% sensitivities and 93.75%, 100% and 96.88% specificities were obtained for 15 <= AHI (PAP therapy necessary), 5 <= AHI<15 (require additional information for PAP therapy decision) and AHI <5 (not require PAP therapy) subgroups, respectively. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [119E127] en_US
dc.description.sponsorship This study is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with project number: 119E127. en_US
dc.identifier.doi 10.18280/ts.370201
dc.identifier.issn 0765-0019
dc.identifier.issn 1958-5608
dc.identifier.scopus 2-s2.0-85084989521
dc.identifier.uri https://doi.org/10.18280/ts.370201
dc.identifier.uri https://hdl.handle.net/20.500.13091/619
dc.language.iso en en_US
dc.publisher INT INFORMATION & ENGINEERING TECHNOLOGY ASSOC en_US
dc.relation.ispartof TRAITEMENT DU SIGNAL en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Obstructive Sleep Apnea Hypopnea Syndrome (Osahs) en_US
dc.subject Positive Airway Pressure (Pap) en_US
dc.subject Apnea-Hypopnea Index (Ahi) en_US
dc.subject Multifractal Detrended Fluctuation Analysis en_US
dc.subject Nasal Cannula Airflow Signals en_US
dc.subject Feature Extraction en_US
dc.subject Feature Selection en_US
dc.subject Random Forest en_US
dc.subject Random Forest Algorithm en_US
dc.subject Sleep-Apnea en_US
dc.subject Gender Determination en_US
dc.subject Automatic Detection en_US
dc.subject Features en_US
dc.subject Events en_US
dc.subject Pressure en_US
dc.title Identification of Apnea-Hypopnea Index Subgroups Based on Multifractal Detrended Fluctuation Analysis and Nasal Cannula Airflow Signals en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kuccukturk, Serkan/0000-0001-8445-666X
gdc.author.scopusid 57190442073
gdc.author.scopusid 23393643600
gdc.author.scopusid 22986589400
gdc.author.scopusid 56780219000
gdc.author.scopusid 6603362805
gdc.author.scopusid 57216861791
gdc.author.wosid Kuccukturk, Serkan/AAA-3999-2019
gdc.author.wosid Vatansev, Hulya/AAQ-5825-2021
gdc.author.wosid Kuccukturk, Serkan/AAZ-9930-2021
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 156 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 145 en_US
gdc.description.volume 37 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W3027673912
gdc.identifier.wos WOS:000534608100001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.825903E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 4.428854E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.views 4
gdc.openalex.collaboration National
gdc.openalex.fwci 0.88665407
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 5
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Özşen, Seral
gdc.virtual.author Solak, Fatma Zehra
gdc.virtual.author Tezel, Gülay
gdc.wos.citedcount 6
relation.isAuthorOfPublication 0a748abb-7416-473a-972c-70aa88a8d2a3
relation.isAuthorOfPublication a143ef98-c9d0-4c3f-b785-24a88d05e33b
relation.isAuthorOfPublication fd306700-db85-40d5-be06-7e211c7c657f
relation.isAuthorOfPublication.latestForDiscovery 0a748abb-7416-473a-972c-70aa88a8d2a3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
37.02_01.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format