Shear Strengthening of Sub-Standard Reinforced Concrete Beams with CFRP: Influence of Fiber Areal Weight, Wrap Scheme and Concrete Strength

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

This study investigates the effectiveness of carbon fiber-reinforced polymer (CFRP) in enhancing the performance of reinforced concrete beams with insufficient shear reinforcement-a common issue in existing low- and high-strength reinforced concrete buildings. A total of 35 one-third scale beams were tested under four-point bending, considering varying concrete strengths (5–70 MPa), CFRP areal weights (300 and 900 g/m²), and wrapping configurations (full (F), U-shaped (U), and side (S)). Key parameters such as load–displacement behavior, energy dissipation, ductility, and stiffness were analyzed in detail. The results demonstrated that CFRP strengthening increased shear capacity by up to 154 % in low-strength concrete (5–20 MPa), while the improvement was limited to 47.2 % in high-strength concrete. Failure modes were significantly influenced by wrapping type: full wrapping led to a 90 % shift from shear to flexural failure, whereas U-shaped and side wrapping achieved only 40 % and 10 % conversion, respectively. Full wrapping also yielded the highest gains in energy dissipation and ductility, while side wrapping alone was largely ineffective. Interestingly, increasing CFRP areal weight did not result in proportional performance gains; in many cases, the 300 g/m² application outperformed the 900 g/m² variant. This suggests that poor interfacial bonding and inadequate epoxy impregnation may hinder the effectiveness of higher areal weight configurations. In conclusion, concrete strength, wrapping type, and CFRP areal weight must be considered collectively in shear strengthening strategies. Among these, full wrapping offers the most consistent and reliable improvements in shear capacity, ductility. and energy dissipation. © 2025 Institution of Structural Engineers. Published by Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Description

Keywords

CFRP Strengthening, Concrete Strength, Experimental Study, Reinforced Concrete Beams, Wrap Configuration

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Structures

Volume

82

Issue

Start Page

110734

End Page

PlumX Metrics
Citations

Scopus : 0

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.