Fault Diagnosis in Thermal Images of Transformer and Asynchronous Motor Through Semantic Segmentation and Different Cnn Models

dc.contributor.author Aslan, Busra
dc.contributor.author Balci, Selami
dc.contributor.author Kayabasi, Ahmet
dc.date.accessioned 2025-02-10T18:10:33Z
dc.date.available 2025-02-10T18:10:33Z
dc.date.issued 2025
dc.description.abstract Transformers are crucial power equipment that play an important role in changing voltage levels to meet consumer needs and in transmitting electricity. A fault in a transformer can cause significant economic losses and social problems. Similarly, asynchronous motors are widely used in industry, and faults in these motors can have substantial negative effects on both the economy and human life. Early detection of faults in both types of power equipment can save time and costs, as well as allow for remedial measures to prevent the failure of the entire system. Traditional fault diagnosis methods, which integrate various monitoring and measurement equipment into power systems, are not sufficient for early fault detection. Therefore, modern solutions have evolved towards more reliable and risk-free artificial intelligence (AI)-based automatic fault diagnosis methods. In our application, we aim to determine faults based on AI in thermal images of asynchronous motors and transformers in operation. Specifically, we propose a semantic segmentation application that highlights fault areas on thermal images, setting other pixels as background. This approach allows the region where the fault occurred to be taken as a reference for later fault diagnosis. As a result of semantic segmentation, the winding of the transformer and the stator region of the asynchronous motor are automatically segmented. Data augmentation techniques are then applied to these segmented images. Augmented and segmented motor and transformer images are classified using seven different Convolutional Neural Network (CNN) models. The results show that CNN models provide fault classification with accuracy reaching 100% for transformers and 96.49% for asynchronous motors. en_US
dc.identifier.doi 10.1016/j.applthermaleng.2025.125599
dc.identifier.issn 1359-4311
dc.identifier.issn 1873-5606
dc.identifier.scopus 2-s2.0-85215837486
dc.identifier.uri https://doi.org/10.1016/j.applthermaleng.2025.125599
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.ispartof Applied Thermal Engineering
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Cnn en_US
dc.subject Fault Diagnosis en_US
dc.subject Induction Motor en_US
dc.subject Semantic Segmentation en_US
dc.subject Transformer en_US
dc.title Fault Diagnosis in Thermal Images of Transformer and Asynchronous Motor Through Semantic Segmentation and Different Cnn Models en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.wosid Balci, Selami̇/I-4734-2018
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Aslan, Busra] Karamanoglu Mehmetbey Univ, Grad Sch Nat & Appl Sci, Dept Mechatron Engn, Karaman, Turkiye; [Aslan, Busra] Konya Tech Univ, Dept Elect & Automat, Vocat Sch Tech Sci, Konya, Turkiye; [Balci, Selami; Kayabasi, Ahmet] Karamanoglu Mehmetbey Univ, Fac Engn, Dept Elect & Elect Engn, Karaman, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 125599
gdc.description.volume 265 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4406559643
gdc.identifier.wos WOS:001409850300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 12.0
gdc.oaire.influence 3.112052E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.0342815E-8
gdc.oaire.publicfunded false
gdc.openalex.fwci 14.15096018
gdc.openalex.normalizedpercentile 0.97
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 9
gdc.virtual.author Aslan, Büşra
gdc.wos.citedcount 7
relation.isAuthorOfPublication 32fde65f-89be-497e-9ec9-56a5fcd615d5
relation.isAuthorOfPublication.latestForDiscovery 32fde65f-89be-497e-9ec9-56a5fcd615d5

Files