Machine Learning Prediction of Wind Turbine Energy Production

dc.contributor.author Erdem, O.E.
dc.contributor.author Sarucan, A.
dc.contributor.author Baysal, M.E.
dc.date.accessioned 2023-11-11T09:03:39Z
dc.date.available 2023-11-11T09:03:39Z
dc.date.issued 2023
dc.description Intelligent and Fuzzy Systems - Intelligence and Sustainable Future Proceedings of the INFUS 2023 Conference -- 22 August 2023 through 24 August 2023 -- -- 299549 en_US
dc.description.abstract This study used statistical data to create predictive models for effective and efficient use of energy generation systems using machine learning algorithms. Four different models predicted wind energy production and compared with actual production data. Model validity and verification were evaluated using mean square error, mean absolute error, and R-squared values. The model constructed with the random forest method is the most successful model. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. en_US
dc.identifier.doi 10.1007/978-3-031-39777-6_21
dc.identifier.isbn 9783031397769
dc.identifier.issn 2367-3370
dc.identifier.scopus 2-s2.0-85172732344
dc.identifier.uri https://doi.org/10.1007/978-3-031-39777-6_21
dc.identifier.uri https://hdl.handle.net/20.500.13091/4765
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Lecture Notes in Networks and Systems en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Data en_US
dc.subject Energy en_US
dc.subject Machine Learning en_US
dc.subject Forestry en_US
dc.subject Learning algorithms en_US
dc.subject Mean square error en_US
dc.subject Wind power en_US
dc.subject Wind turbines en_US
dc.subject Data en_US
dc.subject Efficient use of energy en_US
dc.subject Energy en_US
dc.subject Energy generations en_US
dc.subject Energy productions en_US
dc.subject Generation systems en_US
dc.subject Machine learning algorithms en_US
dc.subject Machine-learning en_US
dc.subject Predictive models en_US
dc.subject Statistical datas en_US
dc.subject Machine learning en_US
dc.title Machine Learning Prediction of Wind Turbine Energy Production en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 57217209988
gdc.author.scopusid 54405086400
gdc.author.scopusid 56007700700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department KTÜN en_US
gdc.description.departmenttemp Erdem, O.E., Konya Technical University, Selçuklu, Konya, Turkey; Sarucan, A., Konya Technical University, Selçuklu, Konya, Turkey; Baysal, M.E., Konya Technical University, Selçuklu, Konya, Turkey en_US
gdc.description.endpage 180 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 173 en_US
gdc.description.volume 759 LNNS en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4385882807
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.0536601E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.38
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Sarucan, Ahmet
relation.isAuthorOfPublication 30b38eab-12da-4082-86fb-8b406ecbc0d6
relation.isAuthorOfPublication.latestForDiscovery 30b38eab-12da-4082-86fb-8b406ecbc0d6

Files