A Novel Metaheuristic Algorithm by Efficient Crossover Operator for Land Readjustment

Loading...
Thumbnail Image

Date

2022

Authors

Koç, İsmail
Çay, Tayfun
Babaoğlu, İsmail

Journal Title

Journal ISSN

Volume Title

Publisher

PERGAMON-ELSEVIER SCIENCE LTD

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Land readjustment and reallocation (LR) applications are complex and difficult real-world problems involving many different criteria. By considering these criteria, it is very difficult and takes a long time to be solved manually by an expert. Since the search space of these problems is very large, solution of these problems requires meta-heuristic optimization algorithms instead of classical methods in order to acquire more robust, acceptable and qualified solutions. Considering the meta-heuristic approaches, the algorithm needs an objective function that can make the right decision and evaluate the solutions most reasonably among the candidate solutions. Using the proposed objective function, the quality of the distribution and subdivision plans will be automatically evaluated and compared without the need for an expert. In this study, an objective function which considers all the criteria in the LR problems is proposed. In addition, unlike the available crossover operators used in metaheuristic algorithms in the literature, two different parcel-based crossover operators called Classical (CPC) and Intelligent (IPC) Parcel-Based Crossover Operators are proposed. While CPC performs the distribution of the owners to the predetermined parcel randomly, IPC makes this operation with a greedy approach rather than randomly. According to this approach, if the shareholder and distance values after the crossover operation would be better than the existing ones, the crossover operation is performed. Otherwise, this operation is cancelled. By using the proposed objective function and crossover operators, artificial bee colony (ABC), particle swarm optimization (PSO) and differential evolution (DE) algorithms are run under equal conditions on a real project site, and the obtained results are compared with the official results obtained by a technician in the study. In addition, since there will be so many zoning blocks of different sizes and shapes on a real project site, it is very possible to have gaps or overflows in the blocks of subdivision plans obtained from the algorithms. Therefore, the gaps and overflow areas in the blocks can be completely eliminated by utilizing an Expert System developed specifically for LR problems called LRES, and as a result, the solutions obtained from the algorithms can be directly applicable in real life by the LRES. It's clearly seen from the experimental studies that all of the results obtained by using the algorithms based on LRES are much more effective than the official results obtained by a technician in terms of both solution quality and speed. In addition, among the evaluated algorithms, it is observed that the PSO algorithm presents much more effective and robust results than results of the other algorithms. Moreover, as a consequence of the algorithms using the IPC presents much more successful results than the results of the algorithms using CPC, it can be used as a very effective alternative crossover operator for land use problems.

Description

Keywords

Subdivision, Land Readjustment, Land Reallocation, Zoning Application, Metaheuristic Algorithms, Intelligent Parcel-Based Crossover, Expert System, Differential Evolution, Optimization

Turkish CoHE Thesis Center URL

Fields of Science

0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
3

Source

EXPERT SYSTEMS WITH APPLICATIONS

Volume

188

Issue

Start Page

116082

End Page

PlumX Metrics
Citations

CrossRef : 2

Scopus : 8

Captures

Mendeley Readers : 11

SCOPUS™ Citations

7

checked on Feb 03, 2026

Web of Science™ Citations

6

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.38796421

Sustainable Development Goals

SDG data is not available