Plasma Surface Modification of Graphene Oxide Nanosheets for the Synthesis of Go/Pes Nanocomposite Ultrafiltration Membrane for Enhanced Oily Separation

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In this study, two different monomers, namely hexafluorobutyl acrylate (HFBA) and diethylaminoethyl methacrylate (DEAEMA) were individually used to modify graphene oxide (GO) nanosheets via environmentally friendly plasma enhanced chemical vapor deposition (PECVD) method. The results from instrumental analyses confirmed the successful deposition of respective functional material onto the nanomaterials. Modified GOs were used as the nano-fillers to develop composite polyethersulfone (PES) ultrafiltration (UF) membrane with improved surface properties for oily solution treatment. All the developed membranes were characterized with a series of analytical instruments to support the findings of membrane filtration performance. The results indicated that the membrane incorporated with DEAEMA-GOs (coated with hydrophilic polymer) could achieve better results in terms of oil rejection, antifouling resistance and water recovery rate than the membrane incorporated with HFBA-GOs (coated with hydrophobic polymer). This is due to the reduced agglomeration between modified GOs as well as better interaction of hydrophilic-coated GOs with polymer membrane. Compared to the pure water flux of the membrane incorporated with unmodified GO, the membrane incorporated with DEAEMA-GO achieve approximately 85% higher value with oil removal rate remained almost unchanged (98.94% rejection).

Description

Keywords

coating, graphene oxide, oil/water separation, PECVD, polymeric thin film, Dispersion, Fabrication, Stability, 660, Q Science (General)

Turkish CoHE Thesis Center URL

Fields of Science

02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
6

Source

Journal of Applied Polymer Science

Volume

140

Issue

5

Start Page

End Page

PlumX Metrics
Citations

CrossRef : 2

Scopus : 10

Captures

Mendeley Readers : 10

SCOPUS™ Citations

10

checked on Feb 03, 2026

Web of Science™ Citations

10

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.90294778

Sustainable Development Goals

SDG data is not available