Feature Extraction Methods for Predicting the Prevalence of Heart Disease

dc.contributor.author Ngong, I.C.
dc.contributor.author Baykan, Nurdan
dc.date.accessioned 2022-05-23T20:07:30Z
dc.date.available 2022-05-23T20:07:30Z
dc.date.issued 2022
dc.description 6th International Conference on Smart City Applications, SCA 2021 -- 27 October 2021 through 29 October 2021 -- -- 274389 en_US
dc.description.abstract This paper presents an automatic classification technique for the detection of cardiac arrhythmias from ECG signals. With cardiac arrhythmias being one of the leading causes of death in the world, accurate and early detection of beat abnormalities can significantly reduce mortality rates. ECG signals are vastly used by physicians for diagnosing heart problems and abnormalities as a result of its simplicity and non-invasive nature. The aim of this study is to determine the most accurate combination of feature extraction methods and SVM (Support Vector Machine) kernel classifier that will produce the best results on ECG signals obtained from the MIT-BIH Arrhythmia Database. SVM classifiers with four different kernels (linear, polynomial, radial basis, and sigmoid) were used to classify different features extracted from the four feature selection methods; Random Forests, XGBoost, Principal Component Analysis, and Convolutional Neural Networks. The CNN-SVM classifier produced the best results overall, with the polynomial kernel achieving the maximum accuracy of 99.2%, the best sensitivity 92.40% from the radial basis kernel, and best specificity of 98.92% from the linear kernel. The high classification accuracy obtained is comparable to or even better than other approaches in literature. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. en_US
dc.identifier.doi 10.1007/978-3-030-94191-8_39
dc.identifier.isbn 9783030941901
dc.identifier.issn 2367-3370
dc.identifier.scopus 2-s2.0-85126351398
dc.identifier.uri https://doi.org/10.1007/978-3-030-94191-8_39
dc.identifier.uri https://hdl.handle.net/20.500.13091/2372
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Lecture Notes in Networks and Systems en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Arrhythmias en_US
dc.subject Boosted Trees (BT) en_US
dc.subject Classification en_US
dc.subject ECG en_US
dc.subject Feature extraction en_US
dc.subject Heart disease en_US
dc.subject Principal Component Analysis (PCA) and Convolutional Neural Networks (CNN) en_US
dc.subject Random Forest (RF) en_US
dc.subject Support Vector Machines (SVM) en_US
dc.title Feature Extraction Methods for Predicting the Prevalence of Heart Disease en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57221764751
gdc.author.scopusid 35091134000
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 494 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 481 en_US
gdc.description.volume 393 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4214884732
gdc.identifier.wos WOS:000928840400039
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6440143E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9822858E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 1.37061274
gdc.openalex.normalizedpercentile 0.73
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Baykan, Nurdan
gdc.wos.citedcount 0
relation.isAuthorOfPublication 81dff1ca-db16-4103-b9cb-612ae1600b38
relation.isAuthorOfPublication.latestForDiscovery 81dff1ca-db16-4103-b9cb-612ae1600b38

Files