TÜRKİYE'DE ENERJİ TALEBİNİ TAHMİN ETMEK İÇİN DOĞRUSAL FORM KULLANARAK GSA (YERÇEKİMİ ARAMA ALGORİTMASI) VE IWO (YABANİ OT OPTİMİZASYON ALGORİTMASI) TEKNİKLERİNİN UYGULANMASI
Loading...
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
GOLD
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Bu çalışma, Türkiye'deki ekonomik göstergelere dayalı enerji talep tahmini ile ilgilidir. Enerji talebini tahmin etmek için Yerçekimi Arama Algoritması (GSA) ve Yabani Ot Algoritması (IWO) tekniklerine dayanan iki farklı model önerilmektedir. GSA yöntemi, Newton’un hareket ve yerçekimi kanunlarından esinlenerek geliştirilmiş sezgisel optimizasyon algoritmasıdır. IWO algoritması ise doğadaki yabani otların istilacı karakterlerinden esinlenen, evrimsel bir optimizasyon algoritmasıdır. GSA ve IWO yöntemlerine dayalı enerji talep modelleri, gayri safi yurtiçi hâsıla (GSYİH), nüfus, ithalat ve ihracat verilerini giriş parametresi şeklinde kullanan bir model olarak önerilmektedir. Önerilen yöntemler doğrusal regresyon modeli kullanılarak geliştirilmiştir. Türkiye’nin gelecekteki enerji talebi ise üç farklı senaryo altında tahmin edilmektedir. Önerilen tahmin modellerinden elde edilen deneysel sonuçlar karşılaştırmalı olarak verilmiştir. 1979 ve 2005 yılları arasındaki veriler kullanılarak gerçekleştirilen tahmin modelinde IWO literatürdeki diğer yöntemlerle de kıyaslanmış ve IWO yöntemi en yüksek performansı verdiği görülmüştür. 1979 ve 2011 yılları arasındaki tüm veri seti kullanılarak gerçekleştirilen tahmin modelinde ise GSA, IWO yöntemiyle karşılaştırılmış ve GSA daha iyi bir performans elde etmiştir.
This paper deals with energy demand forecast based on economic indicators in Turkey. Two different models based on the Gravity Search Algorithm (GSA) and Invasive Weed Optimization Algorithm (IWO) techniques are proposed to estimate energy demand. GSA is heuristic optimization algorithm inspired by Newton's laws of motion and gravity. The IWO algorithm is an evolutionary optimization algorithm inspired by the invasive characters of weeds in the wild. Energy demand models based on GSA and IWO methods are proposed using gross domestic product (GDP), population, import and export data as input parameters. Proposed methods are developed using linear regression model. Turkey's future energy demand is estimated under three different scenarios. The experimental results obtained by prediction models are given comparatively. In the prediction model using data between 1979 and 2005, IWO is compared with other methods in the literature and IWO method shows the highest performance. However, in the forecasting model obtained using the entire data set between 1979 and 2011, GSA is compared with the IWO method and GSA achieves better performance than IWO.
This paper deals with energy demand forecast based on economic indicators in Turkey. Two different models based on the Gravity Search Algorithm (GSA) and Invasive Weed Optimization Algorithm (IWO) techniques are proposed to estimate energy demand. GSA is heuristic optimization algorithm inspired by Newton's laws of motion and gravity. The IWO algorithm is an evolutionary optimization algorithm inspired by the invasive characters of weeds in the wild. Energy demand models based on GSA and IWO methods are proposed using gross domestic product (GDP), population, import and export data as input parameters. Proposed methods are developed using linear regression model. Turkey's future energy demand is estimated under three different scenarios. The experimental results obtained by prediction models are given comparatively. In the prediction model using data between 1979 and 2005, IWO is compared with other methods in the literature and IWO method shows the highest performance. However, in the forecasting model obtained using the entire data set between 1979 and 2011, GSA is compared with the IWO method and GSA achieves better performance than IWO.
Description
Keywords
Bilgisayar Bilimleri, Yapay Zeka, Bilgisayar Bilimleri, Bilgi Sistemleri, Bilgisayar Bilimleri, Yazılım Mühendisliği, İşletme Finans, İşletme, Optimization, Optimizasyon, Energy demand, Yerçekimi arama algoritması, Enerji Talebi, Türkiye, GSA, IWO, Optimizasyon, Enerji Talep Tahmini, Energy demand forecasting, Invasive weed optimization algorithm, Enerji talebi, Enerji talep tahmini, Gravity search algorithm, Yabani ot algoritması
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
N/A
Scopus Q
N/A

OpenCitations Citation Count
3
Source
Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi
Volume
6
Issue
4
Start Page
529
End Page
543
PlumX Metrics
Captures
Mendeley Readers : 5
Google Scholar™


