Price Prediction and Determination of the Affecting Variables of the Real Estate by Using X-Means Clustering and Cart Decision Trees

dc.contributor.author Yücebaş, Sait Can
dc.contributor.author Yalpır, Şükran
dc.contributor.author Genç, Levent
dc.contributor.author Doğan, Melike
dc.date.accessioned 2024-06-19T14:41:54Z
dc.date.available 2024-06-19T14:41:54Z
dc.date.issued 2024
dc.description.abstract The use of machine learning in real estate is quite new. When the working area is large, the factors affecting the price may vary according to the geographical regions and socioeconomic factors. It is thought that the price prediction performance of a model that will reflect these differences will be more successful than a general model. Unsupervised learning methods can be used both to increase performance and to show the variation of different factors affecting the price according to regions. With this aim, a hybrid model of X -Means clustering and CART decision trees was established in this study. This model successfully learned the geographical and physical variables that affect the price. The prediction performance of the model was compared with the direct capitalization method, which is the gold standard in the domain. The hybrid model has a superior performance over direct capitalization in terms of mean square error, root mean square error and adjusted R -Squared metrics. The scores were 72.86, 0.0057 and 0.978, respectively. The effect of clustering was also examined. Clustering increased the prediction performance by 36%. en_US
dc.identifier.doi 10.3897/jucs.98733
dc.identifier.issn 0948-695X
dc.identifier.issn 0948-6968
dc.identifier.scopus 2-s2.0-85193003918
dc.identifier.uri https://doi.org/10.3897/jucs.98733
dc.identifier.uri https://hdl.handle.net/20.500.13091/5720
dc.language.iso en en_US
dc.publisher Graz Univ Technolgoy, Inst Information Systems Computer Media-Iicm en_US
dc.relation.ispartof Journal of universal computer science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Machine learning en_US
dc.subject Classification and regression tree en_US
dc.subject X-Means clustering en_US
dc.subject prediction methods en_US
dc.subject Real estate en_US
dc.subject Algorithms en_US
dc.title Price Prediction and Determination of the Affecting Variables of the Real Estate by Using X-Means Clustering and Cart Decision Trees en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Yalpır, Şükran
gdc.author.scopusid 24491277000
gdc.author.scopusid 37058085100
gdc.author.scopusid 6602505899
gdc.author.scopusid 59125969500
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Yucebas, Sait Can; Genc, Levent] Canakkale Onsekiz Mart Univ, Canakkale, Turkiye; [Yalpir, Sukran] Konya Tech Univ, Konya, Turkiye; [Dogan, Melike] Laren Engn Map Design, Mugla, Turkiye en_US
gdc.description.endpage 560 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 531 en_US
gdc.description.volume 30 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4395072774
gdc.identifier.wos WOS:001237071800004
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.5967861E-9
gdc.oaire.isgreen false
gdc.oaire.keywords X-Means clustering
gdc.oaire.keywords Classification and regression tree
gdc.oaire.keywords Classification and regression tr
gdc.oaire.keywords Electronic computers. Computer science
gdc.oaire.keywords Machine learning
gdc.oaire.keywords prediction methods
gdc.oaire.keywords QA75.5-76.95
gdc.oaire.keywords Real estate
gdc.oaire.popularity 4.619429E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 3.05530053
gdc.openalex.normalizedpercentile 0.88
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.facebookshareslikecount 76
gdc.plumx.mendeley 9
gdc.plumx.newscount 1
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 2
gdc.virtual.author Yalpır, Şükran
gdc.wos.citedcount 2
relation.isAuthorOfPublication be9c6238-d4b9-4b81-9e9b-12a568c326a9
relation.isAuthorOfPublication.latestForDiscovery be9c6238-d4b9-4b81-9e9b-12a568c326a9

Files