A New Breakpoint To Classify 3d Voxels in Mri: A Space Transform Strategy With 3t2fts-V2 and Its Application for Resnet50-Based Categorization of Brain Tumors

dc.contributor.author Koyuncu, Hasan
dc.contributor.author Barstugan, Muecahid
dc.date.accessioned 2023-08-03T19:00:18Z
dc.date.available 2023-08-03T19:00:18Z
dc.date.issued 2023
dc.description.abstract Three-dimensional (3D) image analyses are frequently applied to perform classification tasks. Herein, 3D-based machine learning systems are generally used/generated by examining two designs: a 3D-based deep learning model or a 3D-based task-specific framework. However, except for a new approach named 3t2FTS, a promising feature transform operating from 3D to two-dimensional (2D) space has not been efficiently investigated for classification applications in 3D magnetic resonance imaging (3D MRI). In other words, a state-of-the-art feature transform strategy is not available that achieves high accuracy and provides the adaptation of 2D-based deep learning models for 3D MRI-based classification. With this aim, this paper presents a new version of the 3t2FTS approach (3t2FTS-v2) to apply a transfer learning model for tumor categorization of 3D MRI data. For performance evaluation, the BraTS 2017/2018 dataset is handled that involves high-grade glioma (HGG) and low-grade glioma (LGG) samples in four different sequences/phases. 3t2FTS-v2 is proposed to effectively transform the features from 3D to 2D space by using two textural features: first-order statistics (FOS) and gray level run length matrix (GLRLM). In 3t2FTS-v2, normalization analyses are assessed to be different from 3t2FTS to accurately transform the space information apart from the usage of GLRLM features. The ResNet50 architecture is preferred to fulfill the HGG/LGG classification due to its remarkable performance in tumor grading. As a result, for the classification of 3D data, the proposed model achieves a 99.64% accuracy by guiding the literature about the importance of 3t2FTS-v2 that can be utilized not only for tumor grading but also for whole brain tissue-based disease classification. en_US
dc.identifier.doi 10.3390/bioengineering10060629
dc.identifier.issn 2306-5354
dc.identifier.scopus 2-s2.0-85163780062
dc.identifier.uri https://doi.org/10.3390/bioengineering10060629
dc.identifier.uri https://hdl.handle.net/20.500.13091/4388
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Bioengineering-Basel en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject brain en_US
dc.subject convolutional neural network en_US
dc.subject dimensional en_US
dc.subject feature transform en_US
dc.subject glioma grading en_US
dc.subject image classification en_US
dc.subject transfer learning en_US
dc.subject tumor en_US
dc.title A New Breakpoint To Classify 3d Voxels in Mri: A Space Transform Strategy With 3t2fts-V2 and Its Application for Resnet50-Based Categorization of Brain Tumors en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Koyuncu, Hasan/0000-0003-4541-8833
gdc.author.id Barstugan, Mucahid/0000-0001-9790-5890
gdc.author.institutional
gdc.author.scopusid 55884277600
gdc.author.scopusid 57200139642
gdc.author.wosid Koyuncu, Hasan/C-2203-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Koyuncu, Hasan; Barstugan, Muecahid] Konya Tech Univ, Fac Engn & Nat Sci, Elect & Elect Engn Dept, TR-42250 Konya, Turkiye en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 629
gdc.description.volume 10 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4378086506
gdc.identifier.pmid 37370560
gdc.identifier.wos WOS:001014055500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.8025258E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Technology
gdc.oaire.keywords dimensional
gdc.oaire.keywords QH301-705.5
gdc.oaire.keywords brain
gdc.oaire.keywords T
gdc.oaire.keywords convolutional neural network
gdc.oaire.keywords feature transform
gdc.oaire.keywords glioma grading
gdc.oaire.keywords Biology (General)
gdc.oaire.keywords brain; convolutional neural network; dimensional; feature transform; glioma grading; image classification; transfer learning; tumor
gdc.oaire.keywords Article
gdc.oaire.keywords image classification
gdc.oaire.popularity 4.382018E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.66682614
gdc.openalex.normalizedpercentile 0.63
gdc.opencitations.count 3
gdc.plumx.mendeley 16
gdc.plumx.newscount 1
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.virtual.author Koyuncu, Hasan
gdc.virtual.author Barstuğan, Mücahid
gdc.wos.citedcount 1
relation.isAuthorOfPublication cb007ba5-2c13-4205-a2bf-53ae58be8fce
relation.isAuthorOfPublication 6aa50dd9-047a-4915-a080-f31da54482c6
relation.isAuthorOfPublication.latestForDiscovery cb007ba5-2c13-4205-a2bf-53ae58be8fce

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bioengineering-10-00629.pdf
Size:
8.57 MB
Format:
Adobe Portable Document Format