Consensus-Based Virtual Leader Tracking Algorithm for Flight Formation Control of Swarm Uavs

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Tubitak Scientific & Technological Research Council Turkey

Open Access Color

GOLD

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Technological developments in industrial areas also impact unmanned aerial vehicles (UAVs). Recent improvements in both software and hardware have significantly increased the use of many UAVs in social and military fields. In particular, the widespread use of these vehicles in social areas such as entertainment, shipping, transportation, and delivery and military areas such as surveillance, tracking, and offensive measures has accelerated the research on swarm systems. This study examined the previous investigations on swarm UAVs and aimed to create a more efficient algorithm. The effectiveness of the proposed algorithm was compared with other leader -based applications. A swarm consisting of 5 UAVs scattered throughout the environment was directed to a fixed altitude using a gathering algorithm. Afterward, a virtual leader was added to the swarm and moved toward the target point by maintaining the flight formation with the consensus -based virtual leader tracking algorithm (CBVLTA). Unlike leader -based applications, where leader or member failure is not taken into account, here, in the event that a random number of UAVs crash and their communication is broken in different scenarios, a new formation shape is created and a flight is made to the target point. The swarm performs the determined formation flight with an error rate below 2% throughout its movement. If the error rate equals or exceeds 2%, push -and -pull functions are applied between members and the error is reduced below 2%. Thus, the results show that the proposed algorithm allows robust and flexible swarm structures against the distortions in topology caused by external factors. In this way, swarm applications such as area coverage, target tracking or detection, collision avoidance, and defense or attack can be performed.

Description

Keywords

Collision avoidance, formation control, target detection, unmanned aerial vehicle swarm, Search, Collision Avoidance, Unmanned Aerial Vehicle Swarm, Formation Control, Target Detection

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Turkish Journal of Electrical Engineering and Computer Sciences

Volume

32

Issue

2

Start Page

251

End Page

267
PlumX Metrics
Citations

CrossRef : 4

Scopus : 4

Captures

Mendeley Readers : 15

SCOPUS™ Citations

3

checked on Feb 03, 2026

Web of Science™ Citations

2

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.5105983

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo