Optimization of Parameters of Cnn Based Method by Particle Swarm Optimization

dc.contributor.author İnik Özkan
dc.contributor.author Ülker Erkan
dc.date.accessioned 2024-12-02T18:44:25Z
dc.date.available 2024-12-02T18:44:25Z
dc.date.issued 2020
dc.description.abstract CNN based models are being developed for the analysis of medical images. These models are varying according to the structure of the tissue to be analyzed and the image acquisition technique. In our previous study, we developed a CNN-based model to perform automatic counting of follicles in the ovary. In the developed model, there are 3 basic parameters that affect segmentation success. These are General Stride (GS), Neighbor Distance (ND) and Patch Accuracy (PA), respectively. It is almost impossible to find the optimum values of these parameters manually. For this reason, in this study, parameter optimization of CNN based model was performed with Particle Swarm Optimization (PSO).As a result of the experimental studies, it was observed that the optimization of these 3 parameters increased the segmentation success of the model by 4.27%. en_US
dc.description.version Hakemli
dc.format.medium Basılı+Elektronik
dc.identifier 6247485
dc.identifier.issn 2394-2827 en_US
dc.identifier.uri http://www.iraj.in/journal/journal_file/journal_pdf/3-632-15871175561-4.pdf
dc.identifier.uri https://hdl.handle.net/20.500.13091/6926
dc.language.iso en en_US
dc.publisher The Ijacen Journal en_US
dc.relation Google Scholar, SJIF,drji,isindexing en_US
dc.relation.ispartof International Journal of Advance Computational Engineering and Networking (IJACEN) en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Mühendislik Temel Alanı->Bilgisayar Bilimleri ve Mühendisliği
dc.subject CNN en_US
dc.subject PSO en_US
dc.subject Ovary en_US
dc.subject Follicle en_US
dc.subject Optimization of parameters en_US
dc.subject Derin Öğrenme en_US
dc.subject Yumurtalık en_US
dc.subject Folikül en_US
dc.subject Parametrelerin optimizasyonu en_US
dc.title Optimization of Parameters of Cnn Based Method by Particle Swarm Optimization en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0003-4393-9870 en_US
gdc.author.institutional Ülker, Erkan en_US
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 4 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1 en_US
gdc.description.volume 8 en_US
gdc.description.wosquality N/A
gdc.publishedmonth February
gdc.virtual.author Ülker, Erkan
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files