A Novel Adaptive Traffic Signal Control Based on Cloud/Fog Computing

dc.contributor.author Çeltek, Seyit Alperen
dc.contributor.author Durdu, Akif
dc.date.accessioned 2022-10-08T20:51:33Z
dc.date.available 2022-10-08T20:51:33Z
dc.date.issued 2022
dc.description.abstract This paper proposes the Internet of Things-based real-time adaptive traffic signal control strategy. The proposed model consists of three-layer; edge computing layer, fog computing layer, and cloud computing layer. The edge computing layer provides real-time and local optimization. The middle layer, which is the fog computing layer, performs a real-time and global optimization process. The cloud computing layer, which is the top layer, acts as a control center and optimizes the parameters of the fog layer and the edge layer. The proposed strategy uses the Deep Q-Learning algorithm for the optimization process in all three layers. This study employs the SUMO traffic simulator for performance evaluation. These results are compared with the results of adaptive traffic control methods. The output of this study shows that the proposed model can reduce waiting times and travel times while increasing travel speed. en_US
dc.identifier.doi 10.1007/s13177-022-00315-3
dc.identifier.issn 1348-8503
dc.identifier.issn 1868-8659
dc.identifier.scopus 2-s2.0-85135272512
dc.identifier.uri https://doi.org/10.1007/s13177-022-00315-3
dc.identifier.uri https://hdl.handle.net/20.500.13091/3107
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof International Journal of Intelligent Transportation Systems Research en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Adaptive traffic Signal Control en_US
dc.subject Internet of things en_US
dc.subject Reinforcement learning en_US
dc.subject Optimization en_US
dc.subject Flow en_US
dc.title A Novel Adaptive Traffic Signal Control Based on Cloud/Fog Computing en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Durdu, Akif
gdc.author.scopusid 57170848000
gdc.author.scopusid 55364612200
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Rektörlük, Rektörlüğe Bağlı Birimler, Kütüphane ve Dokümantasyon Daire Başkanlığı en_US
gdc.description.endpage 650
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 639
gdc.description.volume 20
gdc.description.wosquality Q3
gdc.identifier.openalex W4289223099
gdc.identifier.wos WOS:000834692500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.0558298E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 6.421895E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0203 mechanical engineering
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.65466003
gdc.openalex.normalizedpercentile 0.63
gdc.opencitations.count 4
gdc.plumx.mendeley 20
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 4
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s13177-022-00315-3.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format