Evaluation of the Relationship between the Surface Hardness of Magmatic Building Blocks and Uniaxial Compressive Strength Values with Regression Analysis and Artificial Neural Networks

dc.contributor.author Ince, Ismail
dc.contributor.author Balci, Mehmet Can
dc.contributor.author Barstugan, Mucahid
dc.contributor.author Fener, Mustafa
dc.contributor.author Bozdag, Ali
dc.date.accessioned 2025-09-10T16:52:12Z
dc.date.available 2025-09-10T16:52:12Z
dc.date.issued 2025
dc.description.abstract Uniaxial compressive strength (UCS) values of rocks are the most important input parameter in rock mechanics and engineering applications. This parameter can be determined by laboratory tests and indirect methods. This study aimed to predict the UCS value with two different non-destructive testing techniques. To this end, the uniaxial compressive strength (UCS) and the values of Leeb hardness (HL) with low application energy and Schmidt hammer rebound hardness (SHR) with high application energy, which are among non-destructive testing techniques, of 95 different magmatic rocks (plutonic, volcanic, and pyroclastic) were determined. Simple regression (SR), multiple regression (MR), and artificial neural network (ANN) methods were employed to predict the UCS value. The models obtained using these methods were compared with each other. It was revealed that the model developed by ANN had the highest correlation number. en_US
dc.identifier.doi 10.13168/AGG.2025.0014
dc.identifier.issn 1214-9705
dc.identifier.scopus 2-s2.0-105012286666
dc.identifier.uri https://doi.org/10.13168/AGG.2025.0014
dc.identifier.uri https://hdl.handle.net/20.500.13091/10688
dc.language.iso en en_US
dc.publisher Acad Sci Czech Republic Inst Rock Structure & Mechanics en_US
dc.relation.ispartof Acta Geodynamica et Geomaterialia en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Uniaxial Compressive Strength en_US
dc.subject Schmidt Hammer Rebound Hardness en_US
dc.subject Leeb Hardness en_US
dc.subject Simple Regression en_US
dc.subject Multiple Regressions en_US
dc.subject Artificial Neural Network en_US
dc.title Evaluation of the Relationship between the Surface Hardness of Magmatic Building Blocks and Uniaxial Compressive Strength Values with Regression Analysis and Artificial Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 16555121900
gdc.author.scopusid 55834956200
gdc.author.scopusid 57200139642
gdc.author.scopusid 14522411400
gdc.author.scopusid 57211604468
gdc.author.wosid Balci, Mehmet/Lxw-7809-2024
gdc.author.wosid Barstugan, Mucahid/Nys-6842-2025
gdc.author.wosid Ince, Ismail/Aaa-3236-2021
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Ince, Ismail; Bozdag, Ali] Konya Tech Univ, Dept Geol Engn, Konya, Turkiye; [Balci, Mehmet Can] Batman Univ, Dept Civil Engn, Batman, Turkiye; [Barstugan, Mucahid] Konya Tech Univ, Dept Elect & Elect Engn, Konya, Turkiye; [Barstugan, Mucahid] Ankara Univ, Dept Civil Engn, Ankara, Turkiye en_US
gdc.description.endpage 224 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 213 en_US
gdc.description.volume 22 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W4410089731
gdc.identifier.wos WOS:001539785200006
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.8669784E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 2.39630643
gdc.openalex.normalizedpercentile 0.8
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.crossrefcites 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author İnce, İsmail
gdc.virtual.author Barstuğan, Mücahid
gdc.virtual.author Bozdağ, Ali
gdc.wos.citedcount 1
relation.isAuthorOfPublication aaab0c06-ea61-47ae-a2ea-5444b260751d
relation.isAuthorOfPublication 6aa50dd9-047a-4915-a080-f31da54482c6
relation.isAuthorOfPublication 2eea532f-efbd-4ac5-8377-b55902e6b61b
relation.isAuthorOfPublication.latestForDiscovery aaab0c06-ea61-47ae-a2ea-5444b260751d

Files