The Performance Analysis of Extreme Learning Machines on Odour Recognition

dc.contributor.author Eşme, Engin
dc.contributor.author Kıran, Mustafa Servet
dc.date.accessioned 2021-12-13T10:26:59Z
dc.date.available 2021-12-13T10:26:59Z
dc.date.issued 2018
dc.description 2nd International Conference on Cloud and Big Data Computing (ICCBDC) / 7th International Conference on Intelligent Information Processing (ICIIP) -- AUG 03-05, 2018 -- Barcelona, SPAIN en_US
dc.description.abstract Extreme Learning Machine (ELM) is a single hidden layer feed-forward neural network learning method, which has a high generalization performance as well as faster. In this paper, odour data is discriminated based on the sensor response curve by using ELM, and the main objective is to investigate the optimum number of nodes in the hidden layer of ELM for olfactory detection. The relationship between the number of nodes in the hidden layer and the number of attributes or classes of dataset is queried to achieve the goal. Three odour datasets taken from different sources in literature and two transfer functions for the ELM are used to verify the results of the study. The backpropagation (BP) algorithm is also used for training an artificial neural network for comparison purposes. The analysis is performed for the three datasets by using ELM and BP and obtained results present that the time consumption of ELM is too small to be compared with BP even though the number of nodes is high and better accuracy rates are obtained by ELM. en_US
dc.description.sponsorship Northumbria Univ Newcastle en_US
dc.identifier.doi 10.1145/3264560.3264575
dc.identifier.isbn 978-1-4503-6474-4
dc.identifier.scopus 2-s2.0-85056697019
dc.identifier.uri https://doi.org/10.1145/3264560.3264575
dc.identifier.uri https://hdl.handle.net/20.500.13091/586
dc.language.iso en en_US
dc.publisher ASSOC COMPUTING MACHINERY en_US
dc.relation.ispartof PROCEEDINGS OF 2018 2ND INTERNATIONAL CONFERENCE ON CLOUD AND BIG DATA COMPUTING (ICCBDC 2018) en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Extreme Learning Machine en_US
dc.subject Machine Olfaction en_US
dc.subject Mos Sensors en_US
dc.subject Artificial Neural Network en_US
dc.subject Electronic Nose en_US
dc.subject Prediction en_US
dc.subject Perception en_US
dc.subject Sensor en_US
dc.subject Juice en_US
dc.title The Performance Analysis of Extreme Learning Machines on Odour Recognition en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Kıran, Mustafa Servet/0000-0002-5896-7180
gdc.author.scopusid 57189468408
gdc.author.scopusid 54403096500
gdc.author.wosid Kiran, Mustafa Servet/AAF-9793-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 92 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 87 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W2895558795
gdc.identifier.wos WOS:000455838000018
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Artificial neural network
gdc.oaire.keywords MOS sensors
gdc.oaire.keywords Extreme Learning Machine
gdc.oaire.keywords Machine olfaction
gdc.oaire.popularity 1.0376504E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.19856246
gdc.openalex.normalizedpercentile 0.6
gdc.opencitations.count 0
gdc.plumx.mendeley 12
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Eşme, Engin
gdc.virtual.author Kıran, Mustafa Servet
gdc.wos.citedcount 0
relation.isAuthorOfPublication c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6
relation.isAuthorOfPublication 1b4c0009-61df-4135-a8d5-ed32324e2787
relation.isAuthorOfPublication.latestForDiscovery c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6

Files