Sustainability and Latency Reduction Through Federated Learning-Powered Digital Twins in Iot Devices

dc.contributor.author Abdullah, Qazwan
dc.contributor.author Salh, Adeb
dc.contributor.author Ahmed, Mustafa Sami
dc.contributor.author Shah, Nor Shahida Mohd
dc.contributor.author Aydogdu, Omer
dc.contributor.author Hussain, Ghasan Ali
dc.date.accessioned 2024-08-10T13:37:27Z
dc.date.available 2024-08-10T13:37:27Z
dc.date.issued 2024
dc.description sami, mustafa/0000-0002-3741-7091; ABDULLAH, QAZWAN/0000-0003-0623-2286 en_US
dc.description.abstract The rapid advancement of emerging technologies and the Internet of Things (IoT), including the evolution of Digital Twins (DT), necessitates an accelerated pace in the Beyond Fifth Generation (B5G). This is crucial to establish widespread wireless access by ensuring resilient and immediate wireless connectivity within the real network environment. This article uses edge networks and DTs with blockchain technology. Ensuring robust real-time data processing while providing a scalable and secure solution is the aim. Bridging the gap between digital systems and physical edge networks is the goal. In this research, we bridge the gap between physical edge networks and digital systems by introducing Networks with Digital Twin Edges (NDITE), which combine digital twins and edge networks. Next, we propose a blockchain-driven federated learning method in NDITE to improve data privacy and communication security. We schedule relaying users and manage bandwidth resources using DT-powered Deep Reinforcement Learning (DRL) to increase efficiency. According to the simulation results, the suggested DRL agent-based DT can minimize the weighted cost of transmission policy of edge computing strategies and choose 47.5% of computing tasks to be completed locally with 1 MHz of bandwidth. It can also exploit the optimal policy. en_US
dc.description.sponsorship UTARRF Fund through the University Tunku Abdul Rahman (UTAR) [6557/2A02]; University Tun Hussein Onn Malaysia (UTHM) [Q444] en_US
dc.description.sponsorship This work was supported by the UTARRF Fund through the University Tunku Abdul Rahman (UTAR) Vote no. (6557/2A02). And by University Tun Hussein Onn Malaysia (UTHM) through Tier 1 (vot Q444)). en_US
dc.identifier.doi 10.1109/ICCAE59995.2024.10569209
dc.identifier.isbn 9798350370058
dc.identifier.isbn 9798350370164
dc.identifier.issn 2154-4352
dc.identifier.scopus 2-s2.0-85198375647
dc.identifier.uri https://doi.org/10.1109/ICCAE59995.2024.10569209
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof 16th International Conference on Computer and Automation Engineering (ICCAE) -- MAR 14-16, 2024 -- Melbourne, AUSTRALIA en_US
dc.relation.ispartofseries International Conference on Computer and Automation Engineering
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Digital twins en_US
dc.subject B5G en_US
dc.subject energy consumption en_US
dc.subject DRL en_US
dc.title Sustainability and Latency Reduction Through Federated Learning-Powered Digital Twins in Iot Devices en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id sami, mustafa/0000-0002-3741-7091
gdc.author.id ABDULLAH, QAZWAN/0000-0003-0623-2286
gdc.author.institutional
gdc.author.wosid TARBOSH, QAZWAN ABDULLAH/AAQ-5084-2020
gdc.author.wosid Hussain, Dr. Ghasan/AAM-3492-2021
gdc.author.wosid Ahmed, mustafa sami/AAW-8025-2021
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Abdullah, Qazwan; Shah, Nor Shahida Mohd] Univ Tun Hussein Onn Malaysia, Fac Engn Technol, Muar, Johor, Malaysia; [Salh, Adeb] Univ Tunku Abdul Rahman UTAR, Fac Informat & Commun Technol, Perak, Malaysia; [Ahmed, Mustafa Sami] Univ Technol Iraq, Dept Commun Engn, Baghdad, Iraq; [Aydogdu, Omer] Konya Tech Univ, Fac Engn & Nat Sci, TR-42250 Konya, Turkiye; [Hussain, Ghasan Ali] Univ Kufa, Fac Engn, Dept Elect Engn, Kufa, Iraq en_US
gdc.description.endpage 217 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 211 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4400189448
gdc.identifier.wos WOS:001290469200037
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.4744335E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.36916847
gdc.openalex.normalizedpercentile 0.56
gdc.opencitations.count 0
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Aydoğdu, Ömer
gdc.wos.citedcount 1
relation.isAuthorOfPublication acfe4524-7b19-45c0-8699-f6f3a5ebfad3
relation.isAuthorOfPublication.latestForDiscovery acfe4524-7b19-45c0-8699-f6f3a5ebfad3

Files