Aligning Objects as Preprocessing Combined With Imitation Learning for Improved Generalization

dc.contributor.author Barstugan, Mucahid
dc.contributor.author Masuda, Shimpei
dc.contributor.author Sagawa, Ryusuke
dc.contributor.author Kanehiro, Fumio
dc.date.accessioned 2025-05-11T18:41:41Z
dc.date.available 2025-05-11T18:41:41Z
dc.date.issued 2024
dc.description.abstract Imitation learning method transfers human behavior to the robots or machines. This method aims to allow robots or machines to learn by observing tasks performed by human operators and imitating these tasks, rather than direct programming. ACT as an imitation learning method shows the high capability for automating dexterous manipulation tasks. From the viewpoint of industrial application, pose of the target object will be varied. However, even if only for the initial object pose variation, imitation learning method like ACT usually needs a lot of demonstration data that covers pose variation to train the policy that can generalize for. Collecting large demonstration dataset takes many efforts. This study created an object pick-and-place controller to eliminate pose variation as a preprocess step with YOLOv8, which is a recent object detection technique. The preprocess step automatically moves the object to a specific position and eliminates the pose variation. We show that our system effectiveness on the randomly placed bag opening task that requires both generalization for object pose variation and dexterous bimanual manipulation. The bag opening task was conducted with ACT and preprocess applied ACT methods, and the results were evaluated to examine the effect of the preprocess method to generalization process. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkiye (TUBITAK) [BIDEB-2219 2023/1 1059B192300993]; JSPS KAKENHI [22H00545]; New Energy and Industrial Technology Development Organization (NEDO) [JPNP20006] en_US
dc.description.sponsorship This work was supported in part by the Scientific and Technological Research Council of Turkiye (TUBITAK) BIDEB-2219 2023/1 1059B192300993 International Postdoctoral Research Fellowship Program; in part by JSPS KAKENHI Scientific Research (A) Grant Number 22H00545 and in part by the New Energy and Industrial Technology Development Organization (NEDO) JPNP20006. en_US
dc.identifier.doi 10.1109/ICCR64365.2024.10927529
dc.identifier.isbn 9798331518165
dc.identifier.isbn 9798331518158
dc.identifier.scopus 2-s2.0-105002274490
dc.identifier.uri https://doi.org/10.1109/ICCR64365.2024.10927529
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2024 International Conference on Control and Robotics -- DEC 05-07, 2024 -- Yokohama, JAPAN en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bimanual Manipulation en_US
dc.subject Generalization en_US
dc.subject Imitation Learning en_US
dc.subject Object Detection en_US
dc.subject Policy en_US
dc.subject YOLOv8 en_US
dc.title Aligning Objects as Preprocessing Combined With Imitation Learning for Improved Generalization en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57200139642
gdc.author.scopusid 57219760099
gdc.author.scopusid 59730546100
gdc.author.scopusid 7003861328
gdc.author.wosid Kanehiro, Fumio/L-8660-2016
gdc.author.wosid Sagawa, Ryusuke/M-4271-2016
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Barstugan M.] Konya Technical University, Department of Electrical and Electronics Engineering, Konya, Turkey; [Masuda S.] IRL National Institute of Advanced Industrial Science and Technology, CNRS-AIST JRL (Joint Robotics Laboratory), Tsukuba, Japan; [Sagawa R.] Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan; [Kanehiro F.] IRL National Institute of Advanced Industrial Science and Technology, CNRS-AIST JRL (Joint Robotics Laboratory), Tsukuba, Japan en_US
gdc.description.endpage 380 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 376 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4408839524
gdc.identifier.wos WOS:001465706000059
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.4744335E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.32
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Barstuğan, Mücahid
gdc.wos.citedcount 0
relation.isAuthorOfPublication 6aa50dd9-047a-4915-a080-f31da54482c6
relation.isAuthorOfPublication.latestForDiscovery 6aa50dd9-047a-4915-a080-f31da54482c6

Files