New Modified Liu Estimators to Handle the Multicollinearity in the Beta Regression Model: Simulation and Applications
| dc.contributor.author | Hammad Ali T. | |
| dc.contributor.author | Hafez Eslam H. | |
| dc.contributor.author | Shahzad Usman | |
| dc.contributor.author | Yıldırım, Elif | |
| dc.contributor.author | Almetwally Ehab M. | |
| dc.contributor.author | Kibria B. M. Golam | |
| dc.date.accessioned | 2025-11-14T17:29:59Z | |
| dc.date.available | 2025-11-14T17:29:59Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | The beta regression model (BRM) is widely used for analyzingbounded response variables, such as proportions, percentages. How-ever, when multicollinearity exists among explanatory variables, theconventional maximum likelihood estimator (MLE) becomes unsta-ble and inefficient. To address this issue, we propose new modifiedLiu estimators for the BRM, designed to enhance estimation accu-racy in the presence of high multicollinearity among predictors. Theproposed estimators extend the traditional Liu estimator by incorpo-rating flexible biasing parameters, offering a more robust alternativeto the MLE. Theoretical comparisons demonstrate the superiority ofthe new estimators over existing methods. Additionally, Monte Carlosimulations and real-world applications evidence their improved per-formance in terms of mean squared error (MSE) and mean absoluteerror (MAE). The results indicate that the proposed estimators signif-icantly reduce estimation bias and variance under multicollinearity,providing more reliable regression coefficients. | en_US |
| dc.description.version | Hakemli | |
| dc.format.medium | Basılı+Elektronik | |
| dc.identifier | 9747523 | |
| dc.identifier.doi | 10.64389/mjs.2025.01111 | |
| dc.identifier.issn | 3068-8140 | |
| dc.identifier.uri | https://doi.org/10.64389/mjs.2025.01111 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/11008 | |
| dc.language.iso | tr | en_US |
| dc.relation.ispartof | Modern Journal of Statistics | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fen Bilimleri ve Matematik Temel Alanı | |
| dc.subject | Liu Estimators | en_US |
| dc.subject | Multicollinearity | en_US |
| dc.subject | Beta Regression Model | en_US |
| dc.title | New Modified Liu Estimators to Handle the Multicollinearity in the Beta Regression Model: Simulation and Applications | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Yıldırım, Elif | en_US |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KTÜN | en_US |
| gdc.description.endpage | 79 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 58 | en_US |
| gdc.description.volume | 1 | |
| gdc.identifier.openalex | W4412750057 | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 11.0 | |
| gdc.oaire.influence | 2.9183969E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.0261677E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.fwci | 80.16438071 | |
| gdc.openalex.normalizedpercentile | 1.0 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 4 | |
| gdc.publishedmonth | July | |
| gdc.virtual.author | Yıldırım, Elif | |
| relation.isAuthorOfPublication | 8e4fde38-7439-4110-9f85-caae77eb8770 | |
| relation.isAuthorOfPublication.latestForDiscovery | 8e4fde38-7439-4110-9f85-caae77eb8770 |
Files
Original bundle
1 - 1 of 1
