New Modified Liu Estimators to Handle the Multicollinearity in the Beta Regression Model: Simulation and Applications

dc.contributor.author Hammad Ali T.
dc.contributor.author Hafez Eslam H.
dc.contributor.author Shahzad Usman
dc.contributor.author Yıldırım, Elif
dc.contributor.author Almetwally Ehab M.
dc.contributor.author Kibria B. M. Golam
dc.date.accessioned 2025-11-14T17:29:59Z
dc.date.available 2025-11-14T17:29:59Z
dc.date.issued 2025
dc.description.abstract The beta regression model (BRM) is widely used for analyzingbounded response variables, such as proportions, percentages. How-ever, when multicollinearity exists among explanatory variables, theconventional maximum likelihood estimator (MLE) becomes unsta-ble and inefficient. To address this issue, we propose new modifiedLiu estimators for the BRM, designed to enhance estimation accu-racy in the presence of high multicollinearity among predictors. Theproposed estimators extend the traditional Liu estimator by incorpo-rating flexible biasing parameters, offering a more robust alternativeto the MLE. Theoretical comparisons demonstrate the superiority ofthe new estimators over existing methods. Additionally, Monte Carlosimulations and real-world applications evidence their improved per-formance in terms of mean squared error (MSE) and mean absoluteerror (MAE). The results indicate that the proposed estimators signif-icantly reduce estimation bias and variance under multicollinearity,providing more reliable regression coefficients. en_US
dc.description.version Hakemli
dc.format.medium Basılı+Elektronik
dc.identifier 9747523
dc.identifier.doi 10.64389/mjs.2025.01111
dc.identifier.issn 3068-8140
dc.identifier.uri https://doi.org/10.64389/mjs.2025.01111
dc.identifier.uri https://hdl.handle.net/20.500.13091/11008
dc.language.iso tr en_US
dc.relation.ispartof Modern Journal of Statistics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fen Bilimleri ve Matematik Temel Alanı
dc.subject Liu Estimators en_US
dc.subject Multicollinearity en_US
dc.subject Beta Regression Model en_US
dc.title New Modified Liu Estimators to Handle the Multicollinearity in the Beta Regression Model: Simulation and Applications en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Yıldırım, Elif en_US
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.endpage 79 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 58 en_US
gdc.description.volume 1
gdc.identifier.openalex W4412750057
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 11.0
gdc.oaire.influence 2.9183969E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.0261677E-8
gdc.oaire.publicfunded false
gdc.openalex.fwci 80.16438071
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.publishedmonth July
gdc.virtual.author Yıldırım, Elif
relation.isAuthorOfPublication 8e4fde38-7439-4110-9f85-caae77eb8770
relation.isAuthorOfPublication.latestForDiscovery 8e4fde38-7439-4110-9f85-caae77eb8770

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper+4.pdf
Size:
391.27 KB
Format:
Adobe Portable Document Format
Description: