Artificial Neural Network Analysis of Titanium Dissolution Kinetics in a Sustainable DL-Malic Acid and Sodium Fluoride System: a Fundamental Study Using the Rotating Disc Method

dc.contributor.author Motasim, Mahmoud
dc.contributor.author Abbaker, Ahmed
dc.contributor.author Agacayak, Tevfik
dc.contributor.author Aydogan, Salih
dc.contributor.author Boyrazli, Mustafa
dc.contributor.author Abbas, Mohaid
dc.contributor.author Seifelnassr, Ahmed A. S.
dc.date.accessioned 2025-08-10T17:19:59Z
dc.date.available 2025-08-10T17:19:59Z
dc.date.issued 2025
dc.description.abstract This investigation presents a comprehensive kinetic analysis of titanium dissolution utilising DL-malic acid (a 50/50 mix of D- and L- isomer off malic acid) in conjunction with sodium fluoride solution, offering an innovative alternative to conventional chloride and sulphate methodologies. The experimental protocol employed a rotating disc apparatus to elucidate dissolution kinetics under systematically varied parameters, including angular velocity (rad/min), disc surface area (cm(2)), temperature (degrees C), and molar concentrations of DL-malic acid and sodium fluoride. A sophisticated Artificial Neural Network (ANN) architecture, implementing back-propagation methodology through the Levenberg-Marquardt algorithm with a multilayer {6-10-1} configuration, was developed to predict titanium dissolution behavior. Experimental findings demonstrated that sodium fluoride concentration predominantly influenced dissolution kinetics, manifesting a chemical reaction order of 0.674. The investigation substantiated the theoretical framework of the Levich equation within the rotating disc paradigm. The ANN model demonstrated exceptional predictive capability, achieving correlation coefficients (R-2) of 0.995, 0.994, 0.996, and 0.995 for training, validation, testing, and aggregate datasets. The experimentally determined activation energy of 23 kJ/mol conclusively indicated a diffusion-controlled reaction mechanism, providing fundamental insights into the mass transfer phenomena governing the dissolution process. Cette & eacute;tude pr & eacute;sente une analyse cin & eacute;tique compl & egrave;te de la dissolution du titane utilisant l'acide malique-DL (un m & eacute;lange 50/50 d'isom & egrave;res D et L de l'acide malique) en conjonction avec une solution de fluorure de sodium, offrant un choix innovateur par rapport aux m & eacute;thodologies conventionnelles au chlorure et au sulfate. Le protocole exp & eacute;rimental a utilis & eacute; un appareil & agrave; disque rotatif pour & eacute;lucider la cin & eacute;tique de dissolution, avec des param & egrave;tres vari & eacute;s syst & eacute;matiquement, notamment la vitesse angulaire (rad/min), la superficie du disque (cm2), la temp & eacute;rature (degrees C) et les concentrations molaires de l'acide malique-DL et de fluorure de sodium. On a d & eacute;velopp & eacute; une architecture sophistiqu & eacute;e de r & eacute;seau neuronal artificiel (RNA), mettant en oe uvre une m & eacute;thodologie de r & eacute;tropropagation au moyen de l'algorithme de Levenberg-Marquardt avec une configuration multicouche {6-10-1}, afin de pr & eacute;dire le comportement de dissolution du titane. Les r & eacute;sultats exp & eacute;rimentaux ont d & eacute;montr & eacute; que la concentration en fluorure de sodium influen & ccedil;ait principalement la cin & eacute;tique de dissolution, produisant un ordre de r & eacute;action chimique de 0.674. L'& eacute;tude a corrobor & eacute; le cadre th & eacute;orique de l'& eacute;quation de Levich dans le paradigme du disque rotatif. Le mod & egrave;le de RNA a d & eacute;montr & eacute; une capacit & eacute; exceptionnelle de pr & eacute;diction, atteignant des coefficients de corr & eacute;lation (R2) de 0.995, 0.994, 0.996 et 0.995 pour l'apprentissage, la validation, les essais et les ensembles de donn & eacute;es agr & eacute;g & eacute;es. L'& eacute;nergie d'activation de 23 kJ/mol d & eacute;termin & eacute;e exp & eacute;rimentalement a indiqu & eacute; de mani & egrave;re concluante un m & eacute;canisme de r & eacute;action contr & ocirc;l & eacute; par diffusion, fournissant des informations fondamentales sur les ph & eacute;nom & egrave;nes de transfert de masse gouvernant le proc & eacute;d & eacute; de dissolution. en_US
dc.identifier.doi 10.1080/00084433.2025.2526925
dc.identifier.issn 0008-4433
dc.identifier.issn 1879-1395
dc.identifier.scopus 2-s2.0-105010095587
dc.identifier.uri https://doi.org/10.1080/00084433.2025.2526925
dc.identifier.uri https://hdl.handle.net/20.500.13091/10595
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.ispartof Canadian Metallurgical Quarterly
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Titanium en_US
dc.subject DL-Malic Acid en_US
dc.subject Sodium Fluoride en_US
dc.subject Sustainable Process en_US
dc.subject Dissolution Kinetics en_US
dc.subject ANN en_US
dc.subject Activation Energy en_US
dc.title Artificial Neural Network Analysis of Titanium Dissolution Kinetics in a Sustainable DL-Malic Acid and Sodium Fluoride System: a Fundamental Study Using the Rotating Disc Method en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 58619087700
gdc.author.scopusid 58622227400
gdc.author.scopusid 23472006500
gdc.author.scopusid 56243223400
gdc.author.scopusid 6504239283
gdc.author.scopusid 59980760800
gdc.author.scopusid 59980760800
gdc.author.wosid Boyrazli, Mustafa/A-1221-2018
gdc.author.wosid Aydoğan, Salih/Abf-9776-2021
gdc.author.wosid Motasim, Mahmoud/Hgv-1330-2022
gdc.author.wosid Abbaker, Ahmed/Luy-0975-2024
gdc.author.wosid Agacayak, Tevfik/Abg-6977-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Motasim, Mahmoud; Agacayak, Tevfik; Aydogan, Salih] Konya Tech Univ, Fac Engn & Nat Sci, Dept Min Engn, TR-42250 Konya, Turkiye; [Motasim, Mahmoud; Abbaker, Ahmed] Omdurman Islamic Univ, Fac Engn Sci, Dept Min Engn, Omdurman, Sudan; [Boyrazli, Mustafa] Firat Univ, Engn Fac, Met & Mat Engn Dept, Elazig, Turkiye; [Abbas, Mohaid] Univ Toronto, Fac Appl Sci & Engn, Dept Mech & Ind Engn, Toronto, ON, Canada; [Seifelnassr, Ahmed A. S.] Suez Univ, Fac Petr & Min Engn, Dept Min Engn, Suez, Egypt en_US
gdc.description.endpage 16
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4412032904
gdc.identifier.wos WOS:001522605300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.3
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Aydoğan, Salih
gdc.virtual.author Ağaçayak, Tevfik
gdc.wos.citedcount 0
relation.isAuthorOfPublication 0981e0b3-bd0a-4e44-8869-76c94dd5b65d
relation.isAuthorOfPublication b853f87d-f56d-4a75-b28b-cee7b544f2da
relation.isAuthorOfPublication.latestForDiscovery 0981e0b3-bd0a-4e44-8869-76c94dd5b65d

Files