A Tree Seed Algorithm With Multi-Strategy for Parameter Estimation of Solar Photovoltaic Models

No Thumbnail Available

Date

2024

Authors

Kiran, Mustafa Servet

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Tree seed algorithm, which is one of the metaheuristics algorithms recently proposed for the solution of continuous optimization problems, has an effective algorithmic structure inspired by the relation between trees and seeds. At the same time, the use of two different solution generation mechanisms by depending on the control parameter in TSA aims to balance the exploration and exploitation capabilities of the algorithm. However, when the structure of the algorithm is examined in detail, it is seen that there are some disadvantages such as loss of population diversity and getting stuck in local minimums. To overcome these disadvantages in the basic algorithm, three different approaches (self-adaptive weighting mechanism, chaotic elite learning approach and experience-based learning method) were proposed to TSA under the name of multi-strategies in this study. The algorithm improved with these approaches is named as the multi-strategy-based tree seed algorithm (MS-TSA). MS-TSA was first tested on CEC2017 functions. Then MS-TSA was applied to the problems in the CEC2020 competition and compared with the results of the best performing algorithms in this competition. As a result of the comparisons, MS-TSA was found to be a competitive method on solving benchmark functions. Then, parameter estimation of single diode, double diode and photovoltaic module models using the input data of various solar panels was carried out by the MS-TSA. The results obtained with MS-TSA were compared with both the results of the basic TSA and the results of well-known algorithms in the literature. The results obtained are 9.8642E-04, 9.8356E-04, 2.4251E-03, 1.7534E-03 respectively. As a result of the comparative analysis, the lowest RMSE value was obtained by MS-TSA. In addition, comprehensive performance analyzes of the algorithms were made with the convergence curve, boxplots, current (I)- voltage (V) and power (P)- voltage (V) charac- teristic curves obtained according to the experimental results. As a result of the experiments and analyses, MS- TSA was found to be a more successful method than the compared algorithms in parameter estimation of PV models.

Description

Keywords

PV module, Photovoltaic models, Parameter estimation, Tree seed algorithm, Optimization, Differential Evolution, Optimization Algorithm, Swarm Optimization, Cell Models, Identification, Performance, Extraction

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Applied Soft Computing

Volume

167

Issue

Start Page

112220

End Page

PlumX Metrics
Citations

CrossRef : 3

Scopus : 27

Captures

Mendeley Readers : 7

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
15.96946373

Sustainable Development Goals

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo